Izolacje.com.pl

Zaawansowane wyszukiwanie

Możliwości techniczne napraw lub wzmocnienia budynków z wielkiej płyty

Technical capacities of repairs or reinforcement of panel buildings

Przykład pęknięcia wieszaków stalowych warstwy fakturowej na ścianie zewnętrznej
Fot. M. Wójtowicz (z książki "Trwałość budynków wielkopłytowych w świetle badań")

Przykład pęknięcia wieszaków stalowych warstwy fakturowej na ścianie zewnętrznej


Fot. M. Wójtowicz (z książki "Trwałość budynków wielkopłytowych w świetle badań")

Wieloletnie stosowanie technologii wielkopłytowych stwarzało możliwość projektowego doskonalenia prototypowych rozwiązań systemowych. Z uwagi jednak na ogromną skalę zastosowania tej technologii, np. w budownictwie mieszkaniowym (z ujednoliconymi rozwiązaniami konstrukcyjno-budowlanymi), sytuacja taka mogła prowadzić do wielokrotnego powtarzania błędnych rozwiązań.

Zobacz także

OMEGAPUR Sp. z o.o. Zalety używania pianki poliuretanowej OMEGAPUR OK/12E do ocieplenia poddasza

Zalety używania pianki poliuretanowej OMEGAPUR OK/12E do ocieplenia poddasza Zalety używania pianki poliuretanowej OMEGAPUR OK/12E do ocieplenia poddasza

Izolacja poddasza to niezwykle ważny element każdej inwestycji budowlanej. Odpowiednio ocieplone poddasze pozwala na znaczne obniżenie kosztów ogrzewania, poprawia komfort termiczny, a także przyczynia...

Izolacja poddasza to niezwykle ważny element każdej inwestycji budowlanej. Odpowiednio ocieplone poddasze pozwala na znaczne obniżenie kosztów ogrzewania, poprawia komfort termiczny, a także przyczynia się do podwyższenia standardów energetycznych budynku. Wśród różnych materiałów do ociepleń na rynku, pianka poliuretanowa staje się coraz bardziej popularnym wyborem. Dziś przyjrzymy się bliżej piance otwartokomórkowej OMEGAPUR OK/12E, produktowi od renomowanego producenta piany OMEGAPUR, oraz wskażemy...

Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja domu – na czym polega i jak ją zaplanować? Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.

Purinova Sp. z o.o. Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera

Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera Turkusowa drużyna Purios ciepło wita pomarańczowego bohatera

Wy mówicie, a my słuchamy. Wskazujecie na nudne reklamy, inżynierów w garniturach, patrzących z każdego bilbordu i na Mister Muscle Budowlanki w ogrodniczkach. To wszystko już było, a wciąż zapomina się...

Wy mówicie, a my słuchamy. Wskazujecie na nudne reklamy, inżynierów w garniturach, patrzących z każdego bilbordu i na Mister Muscle Budowlanki w ogrodniczkach. To wszystko już było, a wciąż zapomina się o kimś bardzo ważnym.

Podstawową regułą przy projektowaniu budynków wielkopłytowych było nadawanie im sztywności przestrzennej za pomocą sztywnych ścian poprzecznych i podłużnych, przechodzących przez całą wysokość budynku. Ściany takie stanowiły pionowe przepony, których zadaniem było przejmowanie za pośrednictwem stropów i przekazywanie na grunt sił poziomych pochodzących od działania wiatru oraz wynikających z mimośrodowego ustawienia elementów ściennych, obciążonych pionowo.

Stropy traktowane były w obliczeniach jako sztywne przepony poziome, co było równoznaczne z założeniem niezmienności konturu przekroju poziomego konstrukcji budynku przy jej odkształceniach.

Ściany poprzeczne i podłużne, główne elementy ustroju przestrzennego budynku, traktowano jako wsporniki utwierdzone w monolitycznej, podziemnej części budynku lub rzadziej w gruncie. Dodatkowo ściany zewnętrzne dzięki znacznej sztywności na odkształcenia w swojej płaszczyźnie przeciwdziałają skręcaniu ustroju przestrzennego budynku przy zginaniu i dlatego przyjmowano, że pod wpływem parcia wiatru przekroje ustroju przesuwają się równolegle.

Miejscem wrażliwym budynków wielkopłytowych, odróżniającym je od konstrukcji pozostałych rodzajów budynków ze ścianami nośnymi, jest obecność w tarczach stropowych i ściennych złączy między prefabrykowanymi płytami, wskazującymi miejsca, w których najczęściej mogą pojawić się rysy.

Szczególną rolę w zapewnianiu bezpieczeństwa konstrukcji odgrywają wieńce żelbetowe, obiegające ściany konstrukcyjne w poziomie stropów oraz zbrojenie podporowe stropów, zakotwione w tych wieńcach lub przechodzące z jednego przęsła stropu na drugie. Wieńce i zbrojenie podporowe łączą prefabrykowane płyty w tarcze stropowe i ścienne, a także łączą te tarcze w przestrzenne ustroje budynków.

Obiegowa negatywna ocena jakości budynków wielkopłytowych wynika głównie z:

  • rozwiązań funkcjonalno-użytkowych budynków i mieszkań, będących skutkiem obowiązującego w czasach PRL tzw. normatywu projektowania,
  • zastosowania materiałów i wyrobów (szczególnie wykończeniowych i instalacyjnych) o niedostatecznej jakości,
  • niskiej jakości prac montażowych i wad wykonawczych,
  • niewłaściwego rozumienia pojęcia „projektowego okresu użytkowania”.

Dostępne w okresie powstawania systemów wielkopłytowych publikacje polskie i zagraniczne, wnioski z badań, rekomendacje międzynarodowe oraz normy były wystarczające do zaprojektowania konstrukcji budynków wielkopłytowych tak, aby spełniały stany graniczne nośności i użytkowalności oraz dodatkowo wykazywały odporność na lokalne uszkodzenia spowodowane oddziaływaniami wyjątkowymi.

Budynki wielkopłytowe zrealizowane w latach 1960-1990 charakteryzują się niską jakością funkcjonalno-użytkową mieszkań, nadmierną przenikalnością cieplną przegród zewnętrznych, niedostatecznym stanem instalacji i urządzeń budowlanych oraz niską estetyką elewacji. Dalsze użytkowanie budynków z wielkiej płyty wiąże się więc z potrzebą przeprowadzania specjalistycznych przeglądów okresowych oraz ocen stanu technicznego i badań przydatności do użytkowania budynków, z uwzględnieniem optymalizacji kosztów na prace konserwacyjne, naprawy bieżące i ewentualne modernizacje budynków.

Ocena i wnioski z przeprowadzonych badań ze wskazaniem najczęściej pojawiających się nieprawidłowości

Analizując zagadnienie niezawodności budynków wielkopłytowych, podstawowym elementem oceny jest stan techniczny ścian zewnętrznych, w szczególności możliwość powstania zagrożenia wynikającego z konstrukcji połączenia warstw fakturowych i nośnych ścian trójwarstwowych; dotychczasowe doświadczenia pozwalają twierdzić, że stan ten może być lokalnie niedostateczny z uwagi na występowanie nieprawidłowych łączników stalowych i nadmierne ich obciążenie.

Specyfikacje techniczne, w okresie wznoszenia "wielkiej płyty", wymagały stosowania wieszaków ze stali odpornych na korozję lub stali zwykłych węglowych z naddatkami na korozję (system OWT), czasowo również dopuszczano stale zwykłe węglowe z powłokami cynkowymi lub aluminiowymi. Dotychczas przeprowadzone badania in situ wykazały, że na wieszaki stosowano również stale zwykłe, stale odporne na korozję, stale chromowe bez dodatków niklu oraz stale gatunku H13N4G9.

Szczegółowe badania stanu łączników ścian trójwarstwowych pozwoliły stwierdzić, że głównym problemem w budownictwie wielkopłytowym był brak stali nierdzewnej właściwej jakości do wykonania połączeń ścian, tj. wieszaków i szpilek. Wykonane badania w budynkach wielkopłytowych ujawniły pęknięcia wieszaków ze stali H13N4G9 (również kruche w wyniku korozji międzykrystalicznej) występujące w całym przekroju w miejscach zagięć i prostopadłe do osi prętów (FOT. 1-2).

FOT. 1-2. Przykłady pęknięcia wieszaków stalowych warstwy fakturowej ścian zewnętrznych; fot.: [1]

FOT. 1-2. Przykłady pęknięcia wieszaków stalowych warstwy fakturowej ścian zewnętrznych; fot.: [1]

Zastosowanie w łącznikach oszczędnościowej (przy zmniejszonej zawartości niklu do 4% i wprowadzeniu dodatku manganu) stali gatunku H13N4G9, przy nieprawidłowych procesach jej produkcji (brak odpuszczania i trawienia) i pomimo zachowania proporcji składu chemicznego, nie gwarantowało spełnienia wymagań w zakresie trwałości i wytrzymałości połączenia.

Z prowadzonych badań i dyskusji środowiskowych wynikają obecnie wątpliwości, czy ściany trójwarstwowe, przed dodatkową termomodernizacją, powinny podlegać działaniom eksperckim czy obligatoryjnemu wzmocnieniu połączenia warstw ściennych i izolacyjnych dodatkowymi kotwami.Badania diagnostyczne budynków wielkopłytowych, przeprowadzone przez ITB w latach 2016-2018 w ramach projektu "Ocena bezpieczeństwa i trwałość budynków wykonanych metodami uprzemysłowionymi", pozwoliły pozytywnie ocenić stan bezpieczeństwa podstawowych elementów konstrukcyjnych analizowanych budynków.

Przykładowa ocena stopnia korozji prętów zbrojeniowych w elementach prefabrykowanych i złączach konstrukcyjnych, przeprowadzona podczas badań in situ oraz podczas oceny makroskopowej przy kontrolowanej rozbiórce budynku wielkopłytowego w Bytomiu, pozwoliła dostrzec wyłącznie korozję powierzchniową o nieznacznym zasięgu. Badania laboratoryjne właściwości ochronnych betonu wypełniającego złącza konstrukcyjne (odczyn pH i zawartość jonów chlorkowych) wykazały wartości normowo dopuszczalne.

Dotychczasowe analizy statystyczne awarii i katastrof budowlanych również potwierdzają fakt, że w obszarze budownictwa uprzemysłowionego zagrożenia utraty nośności i/lub stateczności elementów ustroju konstrukcyjnego praktycznie nie występują. Obserwacje zaistniałych zdarzeń pozwalają twierdzić, że zagrożenia w budynkach wielkopłytowych mogą wynikać z pojawiających się oddziaływań o charakterze wyjątkowym np. w wyniku awarii instalacji gazowych, elektrycznych itp.

Oceny trwałości budynków, ze względu na konieczność uwzględnienia korelacji wielu czynników agresywnych, stanowią złożone i trudne zagadnienie. Dotychczasowe doświadczenia z awarii i katastrof (wybuchów gazu i destrukcji części ścian) wskazują, że konstrukcje budynków wielkopłytowych, z uwagi na okres użytkowania, zostały zaprojektowano w sposób prawidłowy. Istotnym problemem dla oceny trwałości mogą być szczegóły niewłaściwego wykonania prefabrykatów oraz ich montażu, który w okresie wznoszenia wielkiej płyty znacząco odbiegał od zasad zapewnienia jakości podczas realizacji robót budowlanych.

Wieloletnie doświadczenia wskazują, że trwałość budynków określoną jako zdolność budynku do spełniania wymaganych funkcji przez określony czas w warunkach oddziaływania czynników środowiskowych można ocenić powyżej 50 lat, z zastrzeżeniem dla tych elementów, w których dostrzec można efekty błędów produkcji prefabrykatów, ich montażu, stosowania niewłaściwych materiałów oraz zaniedbań konserwacyjnych i naprawczych (podczas remontów bieżących i kapitalnych).

Termomodernizacja ścian budynków wzniesionych w technologiach uprzemysłowionych

Współczesne wymagania w zakresie izolacyjności cieplnej budynków i ich przegród są znacznie ostrzejsze niż w okresie wznoszenia budynków wielkopłytowych. Historię zmian zalecanych wartości współczynników przenikania ciepła pokazano na RYS. 1.

RYS. 1. Wymagane i planowane wartości współczynnika przenikania ciepła ścian i dachów/stropodachów w kolejnych wydaniach norm i przepisów krajowych; rys.: autor

RYS. 1. Wymagane i planowane wartości współczynnika przenikania ciepła ścian i dachów/stropodachów w kolejnych wydaniach norm i przepisów krajowych; rys.: autor

Z uwagi na powyższe i w celu poprawy właściwości izolacyjnych, część zarządców i właścicieli nieruchomości przeprowadza obecnie ponowne (wielokrotne) docieplenia budynków już wcześniej poddanych termomodernizacji.

Według założeń projektowych (funkcjonujących w okresie wznoszenia wielkiej płyty) ściany jednowarstwowe miały charakteryzować się współczynnikami przenikania ciepła około 1,2, a trójwarstwowe około 0,7 W/(m2·K). Badania ścian budynków wielkopłytowych wykazały, że rzeczywiste wartości są wyższe o 0,3-0,5 w przegrodach jednowarstwowych i wyższe o 0,2 W/(m2·K) w przegrodach trójwarstwowych. Głównymi przyczynami pogorszenia ich izolacyjności cieplnych było stosowanie w nich betonów o zwiększonej gęstości oraz różne niedokładności wykonywania lub uszkodzenia warstw izolacji cieplnych.

Podane wartości nie uwzględniają wpływu mostków cieplnych w połączeniach i węzłach konstrukcyjnych w elementach. Miejscami o najniższej izolacyjności były połączenia ścian szczytowych i podłużnych ze stropem nad piwnicą, złącza pionowe ścian ze ścianami logii i płytami balkonowymi, złącza pionowe ścian szczytowych z podłużnymi, gdzie nie stosowano izolacji cieplnych lub montowano wkładki styropianowe o grubości zaledwie 2 cm. Dodatki do współczynnika przenikania ciepła ścian wynikające z uwzględnienia wpływu mostków cieplnych w różnych systemach wielkopłytowych wynoszą około 0,2-0,3 W/(m2·K).

Szczegółowe rozpoznanie właściwości cieplnych poszczególnych części przegrody (np. ściany zewnętrznej) przeprowadza się na podstawie wyników badań metodą termowizyjną, a badania oporu cieplnego metodą wykorzystującą mierniki gęstości strumienia ciepła.

Niska izolacyjność cieplna połączeń i węzłów konstrukcyjnych powoduje nie tylko występowanie zwiększonych strat ciepła, ale również niskich wartości temperatur wewnętrznych powierzchni przegrody. Dotychczasowe badania wykazały, że w budynkach wielkopłytowych zjawiska te występują głównie w wyżej wymienionych połączeniach narożnych przegród oraz przy ramach okien i drzwi balkonowych. W miejscach tych bezwymiarowa wartość temperatur powierzchni wynosi od około 0,66 do 0,70, czyli niższych od minimalnych dopuszczalnych w budynkach mieszkalnych wartości, które w aktualnych przepisach przyjęto równe 0,72. W pomieszczeniach, w których intensywność wentylacji nie jest dostosowywana przez lokatorów do emisji wilgoci, prowadzi to na ogół do występowania powierzchniowych kondensacji pary wodnej oraz rozwoju zagrzybienia.

Szczególne zagadnienia związane ze stosowaniem dociepleń dotyczą stanów wilgotnościowych przegród. Rozpoznanie stanu przegród w tym zakresie ma szczególne znaczenie w przypadku warstwowych ścian budynków wielkopłytowych, w których istotne jest określenie warunków cieplno-wilgotnościowych, w jakich znajdują się międzywarstwowe łączniki metalowe.

RYS. 2-3. Wzmocnienie połączenia warstw ścian trójwarstwowych budynków wielkopłytowych za pomocą łączników stalowych z trzpieniem osadzonym

RYS. 2-3. Wzmocnienie połączenia warstw ścian trójwarstwowych budynków wielkopłytowych za pomocą łączników stalowych z trzpieniem osadzonym "na sucho" w pasowanym otworze (2), z trzpieniem wklejanym w warstwie nośnej (3). Szczegóły: 1 - warstwa konstrukcyjna ściany, 2 - izolacja termiczna, 3 -warstwa fakturowa, 4 - stalowy łącznik, 5 - kompozycja żywiczna, 6 -mimośrodowa nakładka; rys.: autor

Przed określeniem technologii termomodernizacji ścian zewnętrznych (trójwarstwowych) budynków wielkopłytowych, powinny być przeprowadzone czynności badawcze w zakresie:

  • kontroli okresowych na podstawie oceny makroskopowej dotyczącej m.in.:
    – uszkodzeń warstw elewacyjnych,
    – wad betonu,
    – zawilgoceń płyt warstw fakturowych,
    – otulenia betonem wieszaków i/lub siatek zbrojeniowych warstw fakturowych,
    – widocznych oznak korozji elementów stalowych,
    – ewentualnych uszkodzeń złączy między płytami ścian/warstw zewnętrznych,
    – stanu obróbek blacharskich okien i attyk dachów,
  • kontroli pełnej przeprowadzanej w przypadku stwierdzenia uszkodzeń elewacji budynków wielkopłytowych (np. podczas kontroli okresowych), w zakresie:
    – szczegółowych inwentaryzacji wad i uszkodzeń warstw fakturowych,
    – badań nieniszczących ścian zewnętrznych,
    – odkrywek kontrolnych w celu określenia stanu warstw betonowych i zbrojenia,
    – badań laboratoryjnych cech fizykochemicznych betonu, stali oraz materiału izolacyjnego.

Kontrola stanu elewacji i ścian zewnętrznych wymaga sporządzania protokołów, z których powinny wynikać obowiązki usunięcia nieprawidłowości mogących spowodować zagrożenie bezpieczeństwa ludzi i mienia. Zalecenia pokontrolne powinny również obligować do likwidacji wad związanych z możliwością zawilgocenia izolacji termicznej i korozji wieszaków, co może mieć wpływ na destrukcję fizyczną i wytrzymałość ścian warstwowych. W przypadku stwierdzenia wad elementów konstrukcyjnych należy odnotować je w protokole z kontroli okresowych z zaleceniem opracowania specjalistycznych ekspertyz budowlanych i/lub przeprowadzenia badań w pełnym zakresie.

FOT. 3. Przykład termomodernizacji typowego budynku wielkopłytowego (prace w toku); fot.: autor

FOT. 3. Przykład termomodernizacji typowego budynku wielkopłytowego (prace w toku); fot.: autor

Zalecenia pokontrolne należy zamieszczać w dziennikach kontroli przeglądów ścian trójwarstwowych, wykonywanych np. podczas kontroli okresowych budynków, które powinny obejmować:

  • zakres i technologię lokalnych napraw zarysowań (za pomocą specjalistycznych zapraw lub łączników) w złączach ścian zewnętrznych, które zwykle nie świadczą o zagrożeniu bezpieczeństwa dla konstrukcji nośnej budynków, a tylko o podatności na korozję,
  • wzmocnienia połączeń warstw fakturowych z warstwami konstrukcyjnymi, np. za pomocą stalowych kotew dopuszczonych do stosowania w budownictwie (RYS. 2-3), również w przypadku dodatkowego docieplenia i braku możliwości diagnostycznych oceny stanu technicznego ścian trójwarstwowych,
  • ocieplenia budynków, w celu zabezpieczenia powierzchni elewacji przed destrukcją czynników atmosferycznych (przy zastosowaniu rozwiązań systemowych ETICS (FOT. 3) spełniających wymagania podstawowe dotyczące energooszczędności budynków).

Możliwości techniczne napraw i/lub wzmocnień podstawowych elementów budynków wielkopłytowych

W zależności od wyników przeprowadzanych badań diagnostycznych elementów konstrukcyjnych i wykończeniowych budynków wielkopłytowych oraz po przeprowadzeniu oceny bezpieczeństwa i trwałości, należy zalecić ewentualne wykonanie prac naprawczych i/lub wzmacniających.

Przy występującej destrukcji materiałowej elementów ustroju nośnego możliwe jest wykorzystanie typowych rozwiązań systemowych z zastosowaniem zapraw PCC (ang. polymer cement concrete - zaprawy lub betony hydrauliczne, modyfikowane przez dodanie polimeru i utwardzane po zmieszaniu z wodą), których przydatność do stosowania w budownictwie jest potwierdzona w krajowych ocenach technicznych.

W przypadku uszkodzeń strukturalnych elementów ustroju konstrukcyjnego należy w sposób indywidualny zaprojektować dodatkowe elementy wzmacniające, przywracające wymaganą niezawodność budynków.

Przykład z praktyki inżynierskiej

W wysokim budynku wielkopłytowym stwierdzono występowanie zarysowań w złączach oraz pęknięcia ścian i stropów na piętrach, w szczególności na najwyższych kondygnacjach. Większość uszkodzeń ścian występowała wzdłuż połączeń płyt, nieliczne miały przebieg ukośny; spękania w stropach przebiegały wzdłuż połączeń płyt.

W celu przeciwdziałania powiększaniu się zarysowań w złączach zdecydowano o wykonaniu przed dociepleniem odpowiednich wzmocnień budynku za pomocą ściągów stalowych (RYS. 4 i FOT. 4) oraz za pomocą iniekcji występujących zarysowań. Zadaniem wprowadzonych ściągów było przede wszystkim zespolenie zewnętrznych płyt ściennych ze sobą i z prostopadłymi do nich ścianami konstrukcyjnymi.

RYS. 4. Rzut poziomy kondygnacji powtarzalnej z usytuowaniem elementów wzmocnienia budynku; rys.: autor

RYS. 4. Rzut poziomy kondygnacji powtarzalnej z usytuowaniem elementów wzmocnienia budynku; rys.: autor

FOT. 4. Widok zakotwienia ściągu stalowego; fot.: autor

FOT. 4. Widok zakotwienia ściągu stalowego; fot.: autor

Sposób zabezpieczenia rys i dobór materiału iniekcyjnego zależał zarówno od przyczyn i miejsca ich występowania, jak i od wymiarów rys (głębokości, szerokości i długości).

W przypadku wzmocnienia złączy zabezpieczenia konstrukcji były realizowane poprzez:

  • iniekcje uciąglające, umożliwiające uzyskanie jednorodności materiału,
  • iniekcje uszczelniające, eliminujące nieszczelności w rysach, uziarnionej strukturze materiału, przerwach roboczych, dylatacjach itp.,
  • iniekcje wypełniające, umożliwiające uzyskanie zamknięcia rys, o działaniu hamującym lub uniemożliwiającym, np. dostęp substancji wywołujących korozję.

Ocena stanu technicznego tego budynku (po około 10 latach od wzmocnienia) wskazuje na prawidłową pracę złączy i ustroju przestrzennego budynku.

Wzmocnienia konstrukcji ścian trójwarstwowych, w szczególności elementów łączących warstwy nośne i fakturowe, można uzyskać za pomocą systemowych łączników/kotew stalowych.

Rodzaj, liczbę i rozstaw elementów mocujących należy określać w projekcie wzmocnienia na podstawie rzeczywistego stanu technicznego elementów i kontrolnych obliczeń statyczno-wytrzymałościowych.

Projektowane łączniki powinny być dopuszczone do stosowania w budownictwie oraz być wykonane z materiałów odpornych na działanie korozji w prognozowanym okresie eksploatacji.

W celu zabezpieczenia powierzchni elewacyjnych ścian zewnętrznych budynków wielkopłytowych przed destrukcyjnym działaniem czynników atmosferycznych i ochrony stalowych wieszaków przed korozją oraz w celu poprawy energooszczędności budynków, od lat stosuje się powszechnie ocieplenie ścian zewnętrznych.

Przy termomodernizacji elementów, również przy powtórnym dociepleniu, zaleca się stosowanie systemu ocieplania ETICS, spełniającego wymagania podstawowe dotyczące energooszczędności budynków.

W związku ze specyfiką konstrukcji budynków wielkopłytowych, eksploatowanych przez ok. 50 lat, mogą one wymagać podjęcia szeregu prac remontowych oraz modernizacyjnych w celu wyeliminowania skutków np. wad wykonawczych oraz wbudowania materiałów i wyrobów budowlanych o wątpliwej jakości. Konieczne mogą być również działania mające na celu naprawy uszkodzeń wynikających z długoletniej eksploatacji budynków i nieprawidłowo wykonanych wcześniejszych prac naprawczych.

Wszystkie działania naprawcze w obszarze budownictwa wielkopłytowego powinny uwzględniać konieczność wdrożenia aktualnych przepisów m.in. w celu:

  • przystosowania budynków do współczesnych lub przyszłych standardów energetycznych, ochrony cieplnej, zapotrzebowania na energię np. do ogrzewania i przygotowania ciepłej wody,
  • stworzenia warunków swobodnego korzystania z budynków przez osoby starsze oraz niepełnosprawne, np. poruszające się na wózkach inwalidzkich (FOT. 5),
  • przebudowy/modernizacji mieszkań oraz poprawy parametrów funkcjonalno-użytkowych i oczekiwań społecznych (wielkość pomieszczeń, oświetlenie naturalne, wentylacja).
FOT. 5. Przykład wykorzystania komory zsypowej do montażu dźwigu osobowego - umożliwienie swobodnej komunikacji dla osób niepełnosprawnych; fot.: autor

FOT. 5. Przykład wykorzystania komory zsypowej do montażu dźwigu osobowego - umożliwienie swobodnej komunikacji dla osób niepełnosprawnych; fot.: autor

Remonty i modernizacje budynków wielkopłytowych powinny zmierzać również do dostosowania budownictwa wielkopłytowego do współczesnych wymagań w zakresie:

  • demontażu elewacji z płyt azbestowo-cementowych i wyrobów z zawartością azbestu (np. ścianki loggii, przewody kominowe) oraz zasad bezpiecznej ich utylizacji,
  • termomodernizacji budynków wielkopłytowych, dotychczas nieocieplonych, których montaż został zakończony do końca lat 90. XX wieku, dostosowanych do wymagań i warunków technicznych, jakim powinny odpowiadać budynki oraz obecnej metodologii obliczania charakterystyki energetycznej budynków,
  • wymiany stolarki okiennej w mieszkaniach i na klatkach schodowych na energooszczędną w budynkach objętych termomodernizacją,
  • wymiany wyeksploatowanych przewodów instalacji wodno-kanalizacyjnej, gazowej i grzewczej z dostosowaniem ich do aktualnych przepisów techniczno-budowlanych,
  • modernizacji systemu ogrzewania i przygotowania ciepłej wody użytkowej przez racjonalne wykorzystanie odnawialnych źródeł energii (OZE) w zaopatrzeniu w ciepło,
  • modernizacji/wymiany w budynkach aluminiowej instalacji elektrycznej, np. w zakresie zabezpieczeń przepięciowych,
  • opcjonalnie: eliminacji instalacji gazowych w użytkowanych budynkach wysokich i wysokościowych oraz zastąpienie ich zasilaniem elektrycznym trójfazowym urządzeń kuchennych i podgrzewaczy elektrycznych ciepłej wody użytkowej,
  • modernizacji wentylacji naturalnej grawitacyjnej i mechanicznej (nawiewno-wywiewnej) po termomodernizacji budynków w dostosowaniu do współczesnych wymagań,
  • powtórnego docieplenia elewacji budynków poddanych wcześniej termorenowacji o obniżonej jakości energetycznej przez dostosowanie do współczesnych warunków technicznych i uregulowań prognozy do 2021 roku w zakresie izolacyjności przenikania ciepła ścian, dachów lub stropodachów.

Kierunki przebudowy (rewitalizacji) budynków wielkopłytowych mogą więc obejmować:

  • nadbudowę/rozbudowę budynków,
  • przebudowę struktury mieszkań, polegającą na łączeniu sąsiednich lokali (w pionie i poziomie) w celu poprawy ich funkcjonalności przy uwzględnieniu możliwości technicznych i racjonalizacji ekonomicznej,
  • powiązanie funkcji mieszkalnych z otoczeniem przez zastosowanie efektownych wejść do budynków, zieleni wokół budynków oraz ogródków przydomowych,
  • likwidację skorodowanych betonowych balkonów i loggii oraz zastąpienie ich dostawianymi loggiami z elementów pionowych (żelbetowych lub stalowych), kotwionych w poziomie stropów każdej kondygnacji i opartych na własnych fundamentach,
  • dostosowanie budynków 5-kondygnacyjnych do wymagań warunków technicznych przez dobudowanie od zewnątrz do elewacji dźwigów osobowych oraz przystosowanie klatek schodowych do swobodnego poruszania się osób niepełnosprawnych, szczególnie poruszających się na wózkach inwalidzkich,
  • zmiany funkcjonalne w poziomie parterów przy ewentualnym zmniejszeniu ścian żelbetowych (nowe otwory lub poszerzanie istniejących) dla nowych warunków eksploatacji i aranżacji wnętrz (lokale handlowe i/lub usługowe).

Artykuł jest częścią raportu "Budownictwo wielkopłytowe", opracowanego przez Instytut Techniki Budowlanego na zlecenie Ministerstwa Infrastruktury.

Literatura

  1. M. Wójtowicz, "Trwałość budynków wielkopłytowych w świetle badań", Materiały XIII Konferencji Naukowo-Technicznej "Warsztat pracy rzeczoznawcy budowlanego", Cedzyna 2014.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Powiązane

Bricomarché Sprawdzone sposoby na ocieplenie budynku

Sprawdzone sposoby na ocieplenie budynku

Odpowiednia termoizolacja to niezwykle istotny aspekt związany z ogrzewaniem budynku. Przede wszystkim pozwala znacznie zredukować koszty związane z paliwem potrzebnym do uzyskania i podtrzymywania pożądanej...

Odpowiednia termoizolacja to niezwykle istotny aspekt związany z ogrzewaniem budynku. Przede wszystkim pozwala znacznie zredukować koszty związane z paliwem potrzebnym do uzyskania i podtrzymywania pożądanej temperatury, ale przy okazji także zabezpiecza bryłę budynku przed zniszczeniami. Poznaj najlepsze metody ocieplenia budynku i zobacz, które z nich to najlepsze rozwiązanie dla Ciebie.

Czy w najbliższym czasie planujesz modernizację domu lub mieszkania?

Czy w najbliższym czasie planujesz modernizację domu lub mieszkania?

PU Polska – Związek Producentów Płyt Warstwowych i Izolacji Termoizolacyjność nowych budynków i termomodernizacja istniejących – czy warto?

Termoizolacyjność nowych budynków i termomodernizacja istniejących – czy warto? Termoizolacyjność nowych budynków i termomodernizacja istniejących – czy warto?

W miejsce wcześniejszego „Europejskiego Zielonego Ładu” (The European Green Deal) Parlament Europejski uchwalił dokument „Fit for 55”. W myśl tego programu Unia Europejska już do 2030 r. ma osiągnąć redukcję...

W miejsce wcześniejszego „Europejskiego Zielonego Ładu” (The European Green Deal) Parlament Europejski uchwalił dokument „Fit for 55”. W myśl tego programu Unia Europejska już do 2030 r. ma osiągnąć redukcję emisji dwutlenku węgla aż o 55% względem 1990 r., co stanowi podwyżkę aż o 15 punktów procentowych względem wcześniejszych założeń.

Redakcja miesięcznika IZOLACJE Długoterminowa Strategia Renowacji

Długoterminowa Strategia Renowacji Długoterminowa Strategia Renowacji

Długoterminowa Strategia Renowacji, którą strona polska powinna przedłożyć Komisji Europejskiej do 10 marca 2020 r., jest jednym z wymogów warunkujących dostępność środków finansowych Unii Europejskiej...

Długoterminowa Strategia Renowacji, którą strona polska powinna przedłożyć Komisji Europejskiej do 10 marca 2020 r., jest jednym z wymogów warunkujących dostępność środków finansowych Unii Europejskiej w ramach perspektywy na lata 2021–2027. Strategia przygotowana przez Ministerstwo Rozwoju i Technologii wskazuje na potrzebę promocji głębokiej termomodernizacji i zwiększenia tempa termomodernizacji w Polsce z 1 do ok. 3 proc. rocznie. Od marca 2021 roku dokument oczekuje na podpisanie przez premiera...

dr inż. Andrzej Konarzewski Zrównoważone budownictwo – wprowadzenie do problematyki oceny

Zrównoważone budownictwo – wprowadzenie do problematyki oceny Zrównoważone budownictwo – wprowadzenie do problematyki oceny

Sektor budownictwa dostarcza od 5% do 10% Produktu Krajowego Brutto (PKB) w każdym kraju na świecie i jest głównym pracodawcą, z 10% zatrudnieniem. W tym samym czasie jest odpowiedzialny za zużycie 40%...

Sektor budownictwa dostarcza od 5% do 10% Produktu Krajowego Brutto (PKB) w każdym kraju na świecie i jest głównym pracodawcą, z 10% zatrudnieniem. W tym samym czasie jest odpowiedzialny za zużycie 40% energii, 50% wszystkich naturalnych zasobów i 60% powstających odpadów. Zrównoważony sektor budowlany jest kluczem będącym w stanie doprowadzić do redukcji globalnej emisji gazów cieplarnianych (GHG), a także jest odpowiedzialny za bardziej zrównoważony świat.

Janusz Banera Zarządzanie ryzykiem w budownictwie

Zarządzanie ryzykiem w budownictwie Zarządzanie ryzykiem w budownictwie

Ustalanie oceny i charakteru ryzyka dla zidentyfikowanych czynników jest kluczowym działaniem w celu trafności decyzji w późniejszych krokach związanych z wdrażaniem adekwatnych działań zaradczych.

Ustalanie oceny i charakteru ryzyka dla zidentyfikowanych czynników jest kluczowym działaniem w celu trafności decyzji w późniejszych krokach związanych z wdrażaniem adekwatnych działań zaradczych.

mgr inż. Wojciech Witkowski Zalecenia przy projektowaniu i wykonywaniu systemów ETICS z ceramicznymi i kamiennymi okładzinami elewacyjnymi

Zalecenia przy projektowaniu i wykonywaniu systemów ETICS z ceramicznymi i kamiennymi okładzinami elewacyjnymi Zalecenia przy projektowaniu i wykonywaniu systemów ETICS z ceramicznymi i kamiennymi okładzinami elewacyjnymi

Branża ociepleń budynków rozwija się dynamicznie od ponad 60 lat, a dzisiejsze rozwiązania w tej dziedzinie to przykład świadomego podejścia do wyzwań związanych z nowoczesnym, energooszczędnym budownictwem.

Branża ociepleń budynków rozwija się dynamicznie od ponad 60 lat, a dzisiejsze rozwiązania w tej dziedzinie to przykład świadomego podejścia do wyzwań związanych z nowoczesnym, energooszczędnym budownictwem.

Małgorzata Kośla Rola ekologii w budownictwie – zrównoważone budownictwo

Rola ekologii w budownictwie – zrównoważone budownictwo Rola ekologii w budownictwie – zrównoważone budownictwo

Zrównoważone budownictwo ma na celu zmniejszenie wpływu tej gałęzi przemysłu na środowisko i już dawno przestało być jedynie chwilowym trendem, a stało się koniecznością. Ekologiczne budownictwo stale...

Zrównoważone budownictwo ma na celu zmniejszenie wpływu tej gałęzi przemysłu na środowisko i już dawno przestało być jedynie chwilowym trendem, a stało się koniecznością. Ekologiczne budownictwo stale się rozwija i znacząco poprawia jakość życia mieszkańców i stan planety. Ekonomiczne wykonawstwo, oszczędna eksploatacja obiektu, ekologiczne technologie i materiały to tylko kilka warunków zrównoważonego budownictwa. Rola ekologii w budownictwie jest ogromna i pełni kluczową funkcję w zachowaniu zrównoważonego...

Małgorzata Kośla Głęboka termomodernizacja. Co to jest?

Głęboka termomodernizacja. Co to jest? Głęboka termomodernizacja. Co to jest?

Głęboka termomodernizacja określana jest jako zestaw działań remontowych i modernizacyjnych, które mają na celu zmniejszenie zużycia energii w budynkach, aby zrealizować wymagania prawne obowiązujące od...

Głęboka termomodernizacja określana jest jako zestaw działań remontowych i modernizacyjnych, które mają na celu zmniejszenie zużycia energii w budynkach, aby zrealizować wymagania prawne obowiązujące od 2021 r. Jednak nie można termomodernizacji określać jako remontu lub przebudowy. Definicja głębokiej termomodernizacji nie została jeszcze sprecyzowana, ale Komisja Europejska podjęła próby jej określenia pod względem technicznym. Działania termomodernizacyjne niosą za sobą szereg korzyści. Warto...

BLOKTHERM Sp. z o.o. Rewolucja w termoizolacji budynków z produktami firmy BLOKTHERM®

Rewolucja w termoizolacji budynków z produktami firmy BLOKTHERM® Rewolucja w termoizolacji budynków z produktami firmy BLOKTHERM®

Rosnące koszty energii i pracy oraz coraz większy nacisk na ekologię powodują, że w branży budowlanej należy wciąż szukać nowych, a czasem wręcz rewolucyjnych rozwiązań, które sprostają oczekiwaniom zarówno...

Rosnące koszty energii i pracy oraz coraz większy nacisk na ekologię powodują, że w branży budowlanej należy wciąż szukać nowych, a czasem wręcz rewolucyjnych rozwiązań, które sprostają oczekiwaniom zarówno inwestorów, jak i wykonawców, a także pozwolą zapewnić maksymalną dbałość o środowisko. Takim rozwiązaniem w kwestii termoizolacji budynków dysponuje firma BLOKTHERM® – właściciel patentu na masę termoizolacyjną, której 1 mm może zastąpić 10 cm tradycyjnego styropianu.

Redakcja miesięcznika IZOLACJE Raport BPIE: czyli gdzie jest Polska w zakresie efektywności energetycznej

Raport BPIE: czyli gdzie jest Polska w zakresie efektywności energetycznej Raport BPIE: czyli gdzie jest Polska w zakresie efektywności energetycznej

W styczniu 2022 r. Buildings Performance Institute Europe opublikował raport „Ready for carbon neutral by 2050? Assessing ambition levels in new building standards across the EU” w kontekście wymagań dyrektywy...

W styczniu 2022 r. Buildings Performance Institute Europe opublikował raport „Ready for carbon neutral by 2050? Assessing ambition levels in new building standards across the EU” w kontekście wymagań dyrektywy EPBD oraz średnio- (2030) i długoterminowych (2050) ambicji UE w zakresie dekarbonizacji. Niniejszy raport zawiera ocenę i porównanie poziomów ambicji nowych standardów budowlanych w sześciu krajach: Flandria, Francja, Niemcy, Włochy, Polska i Hiszpania.

dr inż. Aleksander Byrdy, mgr inż. Karolina Imiołek, mgr inż. Jakub Kotliński Elewacje Veture jako rozwiązanie ocieplenia na istniejącej warstwie ocieplenia – symulacje obliczeniowe

Elewacje Veture jako rozwiązanie ocieplenia na istniejącej warstwie ocieplenia – symulacje obliczeniowe Elewacje Veture jako rozwiązanie ocieplenia na istniejącej warstwie ocieplenia – symulacje obliczeniowe

Elewacje Veture w krajach Europy Zachodniej stanowią ciekawą alternatywę dla ociepleń ETICS. Ze względu na prosty montaż i stosowanie materiału okładzinowego wysokiej jakości stanowią one także konkurencyjne...

Elewacje Veture w krajach Europy Zachodniej stanowią ciekawą alternatywę dla ociepleń ETICS. Ze względu na prosty montaż i stosowanie materiału okładzinowego wysokiej jakości stanowią one także konkurencyjne rozwiązanie dla elewacji wentylowanych.

mgr inż. Maciej Rokiel System ETICS – jak czytać i analizować dokumentację projektową (cz. 1). Wybrane zagadnienia

System ETICS – jak czytać i analizować dokumentację projektową (cz. 1). Wybrane zagadnienia System ETICS – jak czytać i analizować dokumentację projektową (cz. 1). Wybrane zagadnienia

Obecne systemy ociepleń ETICS to bogactwo faktur, setki kolorów i dostępność rozwiązań, co umożliwia nieograniczone wręcz możliwości kreowania fasad. Jednak zawsze przed względami estetycznymi pierwszeństwo...

Obecne systemy ociepleń ETICS to bogactwo faktur, setki kolorów i dostępność rozwiązań, co umożliwia nieograniczone wręcz możliwości kreowania fasad. Jednak zawsze przed względami estetycznymi pierwszeństwo mają uwarunkowania techniczne (rzetelnie opracowana dokumentacja techniczna i poprawne wykonawstwo). Tylko wtedy zaprojektowane i poprawnie wykonane ocieplenie będzie i skuteczne, i trwałe.

dr inż. Krzysztof Pawłowski prof. PBŚ, mgr inż. Katarzyna Stefańska Parametry fizykalne przegród zewnętrznych budynków drewnianych – studium przypadku

Parametry fizykalne przegród zewnętrznych budynków drewnianych – studium przypadku Parametry fizykalne przegród zewnętrznych budynków drewnianych – studium przypadku

Budynki drewniane wpisują się w rozwiązania konstrukcyjno-materiałowe szeroko rozumianego budownictwa zrównoważonego. W krajach skandynawskich bardzo popularne i powszechnie stosowane jest właśnie budownictwo...

Budynki drewniane wpisują się w rozwiązania konstrukcyjno-materiałowe szeroko rozumianego budownictwa zrównoważonego. W krajach skandynawskich bardzo popularne i powszechnie stosowane jest właśnie budownictwo drewniane szkieletowe. Mimo że panuje tam chłodniejszy klimat, sprawdza się ono bardzo dobrze, a zaletą tych budynków jest głównie to, że ich obudowa to w większości materiał izolacyjny w postaci wełny mineralnej.

dr inż. Krzysztof Pawłowski prof. PBŚ Jakość cieplna stropodachów nad poddaszami użytkowymi

Jakość cieplna stropodachów nad poddaszami użytkowymi Jakość cieplna stropodachów nad poddaszami użytkowymi

Krajowy plan wsparcia [1] zawiera rekomendowaną do stosowania w praktyce krajową definicję, wg której „budynek o niskim zużyciu energii” to taki, który spełnia wymogi związane z oszczędnością energii i...

Krajowy plan wsparcia [1] zawiera rekomendowaną do stosowania w praktyce krajową definicję, wg której „budynek o niskim zużyciu energii” to taki, który spełnia wymogi związane z oszczędnością energii i izolacyjnością zawarte w przepisach techniczno­‑użytkowych, o których mowa w art. 7 ust. 1 pkt 1 ustawy – Prawo budowlane [2], tj. w szczególności dział X oraz załącznik 2 do rozporządzenia [3] obowiązujące od 1 stycznia 2021 r. (w przypadku budynków zajmowanych przez władze publiczne oraz będących...

Małgorzata Kośla Termoizolacja budynków narażonych na dużą wilgotność

Termoizolacja budynków narażonych na dużą wilgotność Termoizolacja budynków narażonych na dużą wilgotność

Niektóre materiały termoizolacyjne, używane do budowy obiektów narażonych na kondensację, mogą nieść ryzyko zawilgocenia w przegrodzie, przecieków, korozji czy uszkodzeń. Wszystkie te zjawiska z pewnością...

Niektóre materiały termoizolacyjne, używane do budowy obiektów narażonych na kondensację, mogą nieść ryzyko zawilgocenia w przegrodzie, przecieków, korozji czy uszkodzeń. Wszystkie te zjawiska z pewnością wpłyną negatywnie na właściwości termoizolacyjne budynku. Wobec tego, inwestor planujący skuteczne zaizolowanie obiektu, powinien zdawać sobie sprawę, że wybrany materiał musi dobrze spełniać funkcje termomodernizacyjne budynków narażonych na dużą wilgotność i wysokie ciśnienie pary wodnej.

mgr inż. Maciej Rokiel System ETICS – techniczne aspekty stosowania ciemnych kolorów na elewacjach (cz. 2)

System ETICS – techniczne aspekty stosowania ciemnych kolorów na elewacjach (cz. 2) System ETICS – techniczne aspekty stosowania ciemnych kolorów na elewacjach (cz. 2)

Stosowanie ciemnych kolorów na dużych powierzchniach elewacji budynków wymagają odpowiednich rozwiązań technologiczno-materiałowych, Tekst jest kontynuacją artykułu z numeru 3/2022 miesięcznika IZOLACJE.

Stosowanie ciemnych kolorów na dużych powierzchniach elewacji budynków wymagają odpowiednich rozwiązań technologiczno-materiałowych, Tekst jest kontynuacją artykułu z numeru 3/2022 miesięcznika IZOLACJE.

dr inż. Krzysztof Pawłowski prof. PBŚ Jakość cieplna ścian zewnętrznych z pustaków niejednorodnych cieplnie

Jakość cieplna ścian zewnętrznych z pustaków niejednorodnych cieplnie Jakość cieplna ścian zewnętrznych z pustaków niejednorodnych cieplnie

Osiągnięcie standardu „budynku o niskim zużyciu energii” jest możliwe przez spełnienie wymagań wg rozporządzenia [1] w zakresie oszczędności energii i ochrony cieplnej budynków (minimalizacja wskaźnika...

Osiągnięcie standardu „budynku o niskim zużyciu energii” jest możliwe przez spełnienie wymagań wg rozporządzenia [1] w zakresie oszczędności energii i ochrony cieplnej budynków (minimalizacja wskaźnika zapotrzebowania na nieodnawialną energię EP [kWh/(m2·rok)] dla całego budynku oraz współczynników przenikania ciepła U [W//(m2·K)] dla pojedynczych przegród budynku). Powyższe wymusza wprowadzanie nowoczesnych rozwiązań konstrukcyjno-materiałowych elementów obudowy budynku, wysokosprawnych systemów...

Diagnoza luk we wsparciu modernizacji budynków w Polsce

Diagnoza luk we wsparciu modernizacji budynków w Polsce Diagnoza luk we wsparciu modernizacji budynków w Polsce

Obecnie wszystkie kraje UE mierzą się z koniecznością przyspieszenia tempa i zwiększenia głębokości oraz zakresu modernizacji energetycznych budynków. Wiele z nich zaczęło już wdrażać polityki publiczne...

Obecnie wszystkie kraje UE mierzą się z koniecznością przyspieszenia tempa i zwiększenia głębokości oraz zakresu modernizacji energetycznych budynków. Wiele z nich zaczęło już wdrażać polityki publiczne mające na celu odpowiedzieć na to wyzwanie. Instrumenty stosowane przez poszczególne państwa różnią się pod wieloma względami, jednocześnie jednak można dostrzec pewne trendy, takie jak dążenie do integracji poszczególnych narzędzi, czy wzmocnienie zachęt dla kompleksowych inwestycji. W polskim systemie...

mgr inż. Maciej Rokiel System ETICS – dokumentacja projektowa prac ociepleniowych (cz. 3)

System ETICS – dokumentacja projektowa prac ociepleniowych (cz. 3) System ETICS – dokumentacja projektowa prac ociepleniowych (cz. 3)

Artykuł jest kontynuacją artykułów opublikowanych w numerach 3/2022 i 4/2022 miesięcznika „IZOLACJE”.

Artykuł jest kontynuacją artykułów opublikowanych w numerach 3/2022 i 4/2022 miesięcznika „IZOLACJE”.

dr inż. Mariusz Garecki Wykonywanie systemów ociepleń ETICS na zawilgoconych budynkach

Wykonywanie systemów ociepleń ETICS na zawilgoconych budynkach Wykonywanie systemów ociepleń ETICS na zawilgoconych budynkach

Prowadzone od wielu lat rewitalizacje, remonty, przebudowy i rozbudowy istniejących budynków nieodłącznie powiązane są z kwestiami podniesienia ich efektywności energetycznej, oczywiście w miarę możliwości....

Prowadzone od wielu lat rewitalizacje, remonty, przebudowy i rozbudowy istniejących budynków nieodłącznie powiązane są z kwestiami podniesienia ich efektywności energetycznej, oczywiście w miarę możliwości. Dotyczy to zarówno obiektów wpisanych do rejestru zabytków, jak i tych, które znajdują się w strefach ochrony konserwatorskiej i poza nimi. Systematyczny wzrost cen nośników energii, a na przestrzeni ostatniego roku – wzrost wręcz lawinowy, będzie wymuszał na inwestorach konieczność instalacji...

Wsparcie modernizacji budynków – przegląd dobrych praktyk europejskich

Wsparcie modernizacji budynków – przegląd dobrych praktyk europejskich Wsparcie modernizacji budynków – przegląd dobrych praktyk europejskich

W numerze 6/2022 miesięcznika IZOLACJE publikowaliśmy fragmenty Raportu Fali Renowacji przedstawiające luki we wsparciu modernizacji budynków w Polsce. W drugiej części przedstawiamy rozwiązania stosowane...

W numerze 6/2022 miesięcznika IZOLACJE publikowaliśmy fragmenty Raportu Fali Renowacji przedstawiające luki we wsparciu modernizacji budynków w Polsce. W drugiej części przedstawiamy rozwiązania stosowane w innych krajach europejskich.

mgr inż. Maciej Rokiel System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4)

System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4) System ETICS – skutki braku analizy dokumentacji projektowej (cz. 4)

Artykuł jest kontynuacją publikacji zamieszczonych kolejno w numerach 3/2022, 4/2022 i 6/2022 miesięcznika IZOLACJE. W tej części skupimy się na tym, jak skutki braku analizy czy wręcz nieprzeczytania...

Artykuł jest kontynuacją publikacji zamieszczonych kolejno w numerach 3/2022, 4/2022 i 6/2022 miesięcznika IZOLACJE. W tej części skupimy się na tym, jak skutki braku analizy czy wręcz nieprzeczytania dokumentacji projektowej mogą wpłynąć na uszkodzenia systemu. Przez „przeczytanie” należy tu także rozumieć zapoznanie się z tekstem kart technicznych stosowanych materiałów.

dr inż. Pavel Zemene, przewodniczący Stowarzyszenia EPS w Republice Czeskiej Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS

Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS Bezpieczeństwo pożarowe złożonych systemów izolacji cieplnej ETICS

Do bezpieczeństwa pożarowego w budynkach przywiązuje się niezmiernie dużą wagę. Zagadnienie to jest ważne nie tylko ze względu na bezpieczeństwo użytkowników budynku, ale także ze względu na bezpieczną...

Do bezpieczeństwa pożarowego w budynkach przywiązuje się niezmiernie dużą wagę. Zagadnienie to jest ważne nie tylko ze względu na bezpieczeństwo użytkowników budynku, ale także ze względu na bezpieczną eksploatację budynków i ochronę mienia. W praktyce materiały i konstrukcje budowlane muszą spełniać szereg wymagań, związanych między innymi z podstawowymi wymaganiami dotyczącymi stabilności konstrukcji i jej trwałości, izolacyjności termicznej i akustycznej, a także higieny i zdrowia, czy wpływu...

Wybrane dla Ciebie

Pokrycia ceramiczne na każdy dach »

Pokrycia ceramiczne na każdy dach » Pokrycia ceramiczne na każdy dach »

Ochroń się przed hałasem! »

Ochroń się przed hałasem! » Ochroń się przed hałasem! »

Styropian na wiele sposobów »

Styropian na wiele sposobów » Styropian na wiele sposobów »

Wełna kamienna – izolacja bezpieczna od ognia »

Wełna kamienna – izolacja bezpieczna od ognia » Wełna kamienna – izolacja bezpieczna od ognia »

Profile do montażu metodą „lekką-mokrą »

Profile do montażu metodą „lekką-mokrą » Profile do montażu metodą „lekką-mokrą »

Zatrzymaj cenne ciepło wewnątrz »

Zatrzymaj cenne ciepło wewnątrz » Zatrzymaj cenne ciepło wewnątrz »

Panele grzewcze do ścian i sufitów »

Panele grzewcze do ścian i sufitów » Panele grzewcze do ścian i sufitów »

Skuteczna walka z wilgocią w ścianach »

Skuteczna walka z wilgocią w ścianach » Skuteczna walka z wilgocią w ścianach »

Systemowe docieplanie fasad »

Systemowe docieplanie fasad » Systemowe docieplanie fasad »

Skontroluj wypływ ciepła w swojej inwestycji »

Skontroluj wypływ ciepła w swojej inwestycji » Skontroluj wypływ ciepła w swojej inwestycji »

Uszczelnianie fundamentów »

Uszczelnianie fundamentów » Uszczelnianie fundamentów »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka » Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.