Charakterystyki akustyczne gumowo-metalowych przegród dźwiękoizolacyjnych - możliwości predykcji i badania doświadczalne
Acoustic characteristics of rubber-metal sound insulation baffles - possibilities of prediction and experimental tests
Poznaj właściwości akustyczne gumowo-metalowych przegród dźwięko-izolacyjnych
AIB
Przez hałas rozumiane są wszelkie dźwięki niepożądane, nieprzyjemne, dokuczliwe lub szkodliwe. Hałas jest wszechobecny w środowisku, zwłaszcza w środowisku pracy, i należy do szkodliwych czynników fizycznych [1]. Duże dawki hałasu są przyczyną chorób zawodowych oraz wypadków podczas wykonywania pracy. Nadmierny hałas sprzyja także obniżeniu koncentracji pracowników, brakowi lub obniżeniu zrozumiałości sygnałów słownych oraz zmniejszeniu efektywności pracy.
Zobacz także
M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
Ultrapur Sp. z o.o. Pianka poliuretanowa a szczelność budynku
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który...
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który określa właściwości izolacyjne materiału. Jednocześnie jest współczynnikiem wysoce niedoskonałym – określa, jak dany materiał może opierać się utracie ciepła poprzez przewodzenie.
Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.
W celu redukcji poziomu hałasu stosowane są różnego typu zabezpieczenia przeciwhałasowe [2]. Wśród podstawowych rozwiązań technicznych wymienić należy przegrody budowlane [3], ekrany akustyczne, tłumiki hałasu [4], osłony dźwiękoizolacyjne [5], a także adaptację akustyczną, przeprowadzaną w pomieszczeniach z hałaśliwymi maszynami i urządzeniami [6]. Do rozwiązań technicznych, zwłaszcza jeśli mamy na myśli poprawę warunków akustycznych na stanowiskach pracy, zaliczają się także obudowy dźwiękochłonno-izolacyjne.
Przy projektowaniu zabezpieczeń typu obudowa dźwiękochłonno-izolacyjna niezbędna jest wiedza na temat parametrów akustycznych ścianek konstrukcyjnych, które powszechnie nazywane są przegrodami [7]. Przegrody zbudowane z materiałów mających właściwości dźwiękochłonne oraz z płyt, które mają własności dźwiękoizolacyjne, nazywane są przegrodami dźwiękochłonno-izolacyjnymi. Zazwyczaj materiał dźwiękochłonny takiej przegrody umieszcza się w obudowie od wewnątrz, czyli od strony źródła dźwięku.
Podstawowym materiałem dźwiękoizolacyjnym stosowanym przy budowie przegród do konstrukcji obudów dźwiękochłonno-izolacyjnych są płyty metalowe, zazwyczaj są to blachy stalowe lub aluminiowe. Blachy te wyklejane są warstwą gumy. Badania warstw gumowych w rozwiązaniach zabezpieczeń wibroakustycznych zostały szerzej omówione w pracy [8], w której opisano między innymi badania doświadczalne przeprowadzone na stanowiskach laboratoryjnych, dotyczące właściwości dźwiękochłonnych oraz materiałów dźwiękoizolacyjnych.
Oprócz badań laboratoryjnych stosowane są także metody obliczeniowe umożliwiające uzyskanie charakterystyki izolacyjności akustycznej przegród z wykorzystaniem parametrów fizycznych materiałów. W zależności od rodzaju przegrody stosowanych jest wiele modeli obliczeniowych [9-12]. Podstawowym i najbardziej znanym jest prawo masy [3, 13], za pomocą którego w przybliżony sposób można określić izolacyjność akustyczną przegród nie tylko jednorodnych, ale i tych o strukturze warstwowej, wykonanych z materiałów o właściwościach dźwiękoizolacyjnych.
W ramach artykułu poddano weryfikacji, w jakim stopniu przy użyciu podstawowego modelu obliczeniowego można uzyskać charakterystykę izolacyjności akustycznej przegród gumowo-metalowych, która byłaby zgodna z wynikami badań przeprowadzonych w warunkach laboratoryjnych. Weryfikacji poddano także wyniki uzyskane z wykorzystaniem komercyjnego oprogramowania.
Zestawiając charakterystyki widmowe izolacyjności akustycznej na wykresach, dokonano analizy porównawczej. Z charakterystyk widmowych obliczono jednoliczbowe ważone wskaźniki izolacyjności akustycznej Rw, wraz z widmowymi wskaźnikami adaptacyjnymi C i Ctr. Na podstawie zestawienia wartości wskaźników jednoliczbowych porównano wyniki otrzymane metodami obliczeniowymi z wynikami badań doświadczalnych.
Przegrody gumowo-metalowe
Przy konstrukcji ścianek obudów dźwiękochłonno-izolacyjnych, zwłaszcza obudów zintegrowanych, w których istotne jest zachowanie małych wymiarów przegrody (chodzi o ich grubość), stosuje się warstwy gumowe pod różną postacią [8]. Wymienić należy między innymi gumy o strukturze porowatej lub w postaci granulatu o gęstości odpowiednio 350-500 oraz 400-600 kg/m3, które spełniają funkcję rdzenia dźwiękochłonnego w przegrodzie. Granulaty oraz materiały ziarniste znalazły zastosowanie jako warstwy dźwiękochłonne także w przegrodach zabezpieczeń ograniczających hałas - w panelach ekranów akustycznych.
Odmienną grupę stanowią gumy o większej gęstości, wynoszącej 1000-1500 kg/m3, o strukturze litej [8]. Gumy lite, które analizowano w ramach artykułu, pełnią funkcję dźwiękoizolacyjną w elemencie ściennym obudowy. Gdy guma lita wypełnia przestrzeń między dwiema płytami (np. metalowymi), to stanowi wówczas rdzeń dźwiękoizolacyjny przegrody. Tego typu przegrody nazywane są dwuściennymi.
W TAB. 1 przedstawiono własności materiałów stanowiących elementy składowe przegród warstwowych gumowo-metalowych, które analizowano w ramach artykułu. Wszystkie płyty miały wymiary 1000×2000 mm (szerokość×wysokość). Płyty stalowe miały grubość 1 mm, natomiast warstwy gumowe miały grubości 2,5, 5 i 10 mm.
Podstawową płytą dźwiękoizolacyjną była blacha stalowa (S) stanowiąca pojedynczą przegrodę jednorodną. Płyty z gumy EPDM 40 (G), klejone do blach stalowych, stanowiły przegrody dwuwarstwowe (niejednorodne) lub trójwarstwowe, nazywane w tym przypadku przegrodami dwuściennymi w układzie warstw: płyta stalowa–guma–płyta stalowa.
RYS. 1-3. Układy przegród warstwowych: płyta stalowa jednorodna o grubości 1 mm (1), przegrody pojedyncze niejednorodne w układzie: warstwa gumy o grubości 2,5; 5 i 10 mm i płyta stalowa 1 mm (2), przegrody dwuścienne z rdzeniem dźwiękoizolacyjnym w układzie płyta stalowa 1 mm, warstwa gumy o grubości 2,5; 5 i 10 mm i płyta stalowa 1 mm (3); rys.: K. Kosała
Opis oznaczeń i parametrów analizowanych przegród pokazano w TAB. 2, w której podano także odniesienie do RYS. 1-3, przedstawiającego poglądowy układ warstw i oznaczenia przegród. Analizowane przegrody warstwowe gumowo-metalowe miały grubości od 3,5 do 12 mm.
Badania doświadczalne przegród
Badania doświadczalne przegród przeprowadzono w laboratorium sprzężonych komór pogłosowych znajdującym się w Katedrze Mechaniki i Wibroakustyki AGH w Krakowie, które przeznaczone jest do określania izolacyjności akustycznej właściwej od dźwięków powietrznych [4, 8]. Podczas badań akustycznych przegrody dwuwarstwowe usytuowane były warstwami gumowymi od strony komory nadawczej - źródła dźwięku. Badania izolacyjności akustycznej przeprowadzone zostały zgodnie z obowiązującymi normami [14-15].
Na RYS. 4 pokazano wyznaczone z pomiarów charakterystyki izolacyjności akustycznej R dla przegrody jednorodnej - pojedynczej płyty stalowej S oraz przegród dwuwarstwowej gumowo-metalowej G10-S i trójwarstwowej S-G10-S (objaśnienia symboliki przegród zawiera TAB. 2).
RYS. 4. Charakterystyki izolacyjności akustycznej R dla przegród: pojedynczej jednorodnej S, pojedynczej niejednorodnej (dwuwarstwowej) G10-S oraz dwuściennej (trójwarstwowej) S-G10-S [4, 8]; rys.: K. Kosała
RYS. 5. Charakterystyki izolacyjności akustycznej R dla przegród pojedynczych dwuwarstwowych: G2,5-S; G5-S i G10-S [4]; rys.: K. Kosała
Dla każdej przegrody podano wartości jednoliczbowego ważonego wskaźnika izolacyjności akustycznej Rw wraz z widmowymi wskaźnikami adaptacyjnymi (C; Ctr).
RYS. 6. Charakterystyki izolacyjności akustycznej R dla przegród dwuściennych: S-G2,5-S; S-G5-S i S-G10-S [4]; rys.: K. Kosała
Zastosowanie warstwy gumowej o grubości 10 mm, przyklejonej do płyty stalowej, poprawiło własności dźwiękoizolacyjne przegrody, zwiększając wskaźnik Rw o 6 dB. Doklejenie trzeciej warstwy - płyty stalowej przyniosło stosunkowo niewielką korzyść (Rw = 36 dB) w porównaniu do układu dwuwarstwowego.
Na RYS. 5 pokazano porównanie charakterystyk widmowych izolacyjności akustycznej przegród gumowo-metalowych dwuwarstwowych. Zwiększanie grubości warstwy gumowej przyniosło widoczne na wykresach (RYS. 5) zwiększenie wartości izolacyjności akustycznej. Można zaobserwować odpowiadające temu wzrosty wartości wskaźnika Rw o 2 dB.
RYS. 6 przedstawia charakterystyki akustyczne przegród trójwarstwowych (dwuściennych). Zwiększenie grubości gumowego rdzenia dźwiękoizolacyjnego w przegrodzie z 2,5 do 5 mm praktycznie nie powoduje wzrostu izolacyjności akustycznej. Nieznaczną poprawę dźwiękoizolacyjności zauważyć można przy zastosowaniu rdzenia o grubości 10 mm.
Możliwości obliczenia izolacyjności akustycznej przegród warstwowych
Prawo masy
Do przybliżonego określenia charakterystyki izolacyjności akustycznej R stosowane jest prawo masy określone wzorem [13]:
(1),
gdzie:
M - masa powierzchniowa przegrody [kg/m2],
ƒ - częstotliwość [Hz].
Zgodnie ze wzorem (1) izolacyjność akustyczna przegrody jednorodnej jest wprost proporcjonalna do masy powierzchniowej M i częstotliwości fali dźwiękowej ƒ i powinna w przybliżeniu wzrastać o 6 dB na oktawę. Prawo masy nie uwzględnia wpływu własności fizycznych materiału oraz własności konstrukcyjnych przegrody. Pomija ono także zjawisko rezonansu przestrzennego pomiędzy falami dźwiękowymi w ośrodku powietrznym a falami giętnymi w przegrodzie, zwanego zjawiskiem koincydencji, powodującego obniżenie izolacyjności akustycznej dla pewnej częstotliwości [3, 10-13].
Z charakterystyk widmowych (RYS. 4, RYS. 5 i RYS. 6) otrzymanych z badań laboratoryjnych wynika, że dla analizowanych przegród gumowo-metalowych zjawisko koincydencji nie występuje w rozpatrywanym paśmie częstotliwości: 50 Hz-5 kHz. Z tego powodu model prawa masy wydaje się dla tego typu przegród wystarczającym przybliżeniem, a zjawisko to nie będzie tutaj szerzej omawiane.
W modelu prawa masy nie uwzględnia się także wymiarów przegród (szerokości i wysokości płyt).
W celu zastosowania prawa masy dla przegród warstwowych masę powierzchniową M wyznacza się sumując iloczyny gęstości i grubości materiałów (warstw).
Oprogramowanie symulacyjne
Wygodnym w użyciu narzędziem do wyznaczania własności dźwiękoizolacyjnych przegród warstwowych jest komercyjne oprogramowanie, które w szybki sposób, oprócz charakterystyki widmowej, pozwala na obliczenia jednoliczbowych wskaźników, między innymi takich jak Rw, C i Ctr.
Przykładem takiego programu jest AFMG SoundFlow [16], którego użyto w ramach artykułu. Oprogramowanie jest przeznaczone do obliczeń parametrów akustycznych struktur wielowarstwowych, w tym również własności dźwiękochłonnych materiałów. Parametry akustyczne struktury materiałowej obliczane są z wykorzystaniem własności fizycznych materiałów oraz modeli teoretycznych opracowanych przez takich badaczy jak Mechel, Bies i inni [16].
Zgodnie z tematyką artykułu przy użyciu programu wyznaczono charakterystykę izolacyjności akustycznej w pasmach 1/3-oktawowych o częstotliwościach środkowych z zakresu 50 Hz-5 kHz dla siedmiu przegród o parametrach pokazanych w TAB. 2. Podczas obliczeń symulacyjnych uwzględniono wymiary przegród zgodne z wymiarami próbek używanych w czasie badań doświadczalnych.
Wyniki obliczeń izolacyjności akustycznej
RYS. 7. Charakterystyki izolacyjności akustycznej R dla pojedynczej przegrody jednorodnej – S, uzyskane z badań doświadczalnych i obliczeń z użyciem prawa masy oraz badań symulacyjnych [5, 11]; rys.: K. Kosała
RYS. 8. Charakterystyki izolacyjności akustycznej R dla przegród pojedynczych dwuwarstwowych G2,5-S, uzyskane z badań doświadczalnych i obliczeń z użyciem prawa masy oraz badań symulacyjnych; rys.: K. Kosała
RYS. 9. Charakterystyki izolacyjności akustycznej R dla przegród pojedynczych dwuwarstwowych G5-S, uzyskane z badań doświadczalnych i obliczeń z użyciem prawa masy oraz badań symulacyjnych; rys.: K. Kosała
RYS. 10. Charakterystyki izolacyjności akustycznej R dla przegród pojedynczych dwuwarstwowych G10-S, uzyskane z badań doświadczalnych i obliczeń z użyciem prawa masy oraz badań symulacyjnych; rys.: K. Kosała
RYS. 11. Charakterystyki izolacyjności akustycznej R dla przegród dwuściennych S-G2,5-S, uzyskane z badań doświadczalnych i obliczeń z użyciem prawa masy oraz badań symulacyjnych; rys.: K. Kosała
RYS. 12. Charakterystyki izolacyjności akustycznej R dla przegród dwuściennych S-G5-S, uzyskane z badań doświadczalnych i obliczeń z użyciem prawa masy oraz badań symulacyjnych; rys.: K. Kosała
RYS. 13. Charakterystyki izolacyjności akustycznej R dla przegród dwuściennych S-G5-S, uzyskane z badań doświadczalnych i obliczeń z użyciem prawa masy oraz badań symulacyjnych; rys.: K. Kosała
Wykorzystując podstawowy model obliczeniowy, jakim jest prawo masy, jak również obliczenia symulacyjne, wyznaczono charakterystyki widmowe izolacyjności akustycznej R analizowanych przegród. Na RYS. 7, RYS. 8, RYS. 9, RYS. 10, RYS. 11, RYS. 12 i RYS. 13 przedstawiono zestawienie porównawcze charakterystyk dla siedmiu przegród opisanych w tabeli 2, wyznaczonych dwiema metodami obliczeniowymi w odniesieniu do charakterystyki uzyskanej z pomiarów.
Z wykresów pokazanych na RYS. 7, RYS. 8, RYS. 9, RYS. 10, RYS. 11, RYS. 12 i RYS. 13 wynika, że prawo masy dość dobrze sprawdza się w określeniu charakterystyki izolacyjności akustycznej w porównaniu do badań laboratoryjnych. Najlepsze przybliżenia charakterystyk otrzymano dla przegród w zakresie częstotliwości powyżej 160 Hz. Znaczne rozbieżności między wartościami izolacyjności można zaobserwować wraz ze wzrostem grubości gumowej warstwy (RYS. 10) lub gumowego rdzenia dźwiękoizolacyjnego (RYS. 13).
Krzywe izolacyjności akustycznej uzyskane w wyniku przeprowadzonych symulacji w programie komputerowym lepiej oddają charakter krzywych otrzymanych z badań laboratoryjnych. Modele obliczeniowe używane w programie lepiej przybliżają wartości izolacyjności akustycznej uzyskane z badań laboratoryjnych w zakresie niższych częstotliwości (poniżej 200 Hz). Słabsze odwzorowanie charakterystyki, podobnie jak w przypadku modelu prawa masy, zaobserwować można dla przegrody z najgrubszymi warstwami gumy (RYS. 10 i RYS. 13).
W TAB. 3 pokazano zestawienie obliczonych jednoliczbowych ważonych wskaźników izolacyjności akustycznej Rw, wraz z widmowymi wskaźnikami adaptacyjnymi C i Ctr, dla analizowanych w ramach badań doświadczalnych, symulacyjnych i obliczeń z użyciem prawa masy, przegród gumowo-metalowych.
TAB. 3. Jednoliczbowe ważone wskaźniki Rw wraz z widmowymi wskaźnikami adaptacyjnymi C i Ctr, obliczone dla badanych przegród gumowo-metalowych
Wskaźnik jednoliczbowy Rw obliczany jest dla pasma częstotliwości od 100 Hz do 3150 Hz. Wyniki pokazane w TAB. 3 potwierdzają, że w przypadku przegród o stosunkowo dużej grubości (G10-S oraz S-G10-S) wartości Rw, podobnie jak i charakterystyki, znacznie odbiegają od wartości otrzymanych w wyniku badań laboratoryjnych. Różnice wskaźników Rw wynoszą 4-6 dB.
Przeprowadzone analizy porównawcze wykazały, że w przypadku badanych przegród gumowo-metalowych we wszystkich przypadkach (wariantach przegród, TAB. 3) lepsze przybliżenie wartości jednoliczbowego ważonego wskaźnika Rw otrzymano wykorzystując prawo masy, porównując je z wynikami otrzymanymi z obliczeń symulacyjnych.
Wnioski
Przegrody gumowo-metalowe charakteryzują się stosunkowo małą grubością i dość dobrą skutecznością w ograniczaniu poziomu hałasu maszyn i urządzeń, dlatego często wykorzystywane są do budowy ścianek dźwiękoizolacyjnych w obudowach dźwiękochłonno-izolacyjnych, w szczególności w obudowach zintegrowanych.
Aby zapewnić odpowiednie właściwości dźwiękoizolacyjne, warstwy gumowe muszą charakteryzować się dużą gęstością, powyżej 1000 kg/m3, którą mają gumy o strukturze litej.
Do orientacyjnego rozeznania przydatności danej przegrody w konstruowaniu ścianki dźwiękoizolacyjnej typu przegroda gumowo-metalowa, np. do obudowy dźwiękoizolacyjnej lub dźwiękochłonno-izolacyjnej, wystarczającym narzędziem wydaje się zastosowanie podstawowego modelu obliczeniowego, jakim jest prawo masy. Nie uwzględnia ono ani struktury przegrody, ani wpływu własności fizycznych materiału, ani zjawiska koincydencji. Natomiast z obliczonej tym sposobem charakterystyki izolacyjności akustycznej wyznaczyć można jednoliczbowe ważone wskaźniki Rw, które w dość dobrym stopniu, w przypadku analizowanych typów przegród warstwowych - gumowo-metalowych, przybliżają wartości Rw obliczone na podstawie badań laboratoryjnych, zwłaszcza dla przegród jednowarstwowych (jednorodnych) i dwuwarstwowych. W przypadku przegród trójwarstwowych różnice wartości Rw były większe i wynosiły do 4 dB.
Badania symulacyjne również mają wykorzystanie przy określaniu parametrów dźwiękoizolacyjnych przegród gumowo-metalowych. Uzyskano charakter przebiegu krzywej izolacyjności akustycznej zbliżony do wyników otrzymanych z badań laboratoryjnych. Istotny wpływ na wyniki otrzymane z badań symulacyjnych będą miały przede wszystkim dokładne wartości właściwości fizycznych materiałów składowych przegrody.
Artykuł wydany w ramach działalności statutowej AGH w Krakowie, Katedry Mechaniki i Wibroakustyki nr 11.11.130.734.
Literatura
- Z. Engel, W. Zawieska, "Hałas i drgania w procesach pracy - źródła, ocena, zagrożenia", CIOP-PIB, Warszawa 2010.
- Z. Engel, J. Sikora, "Obudowy dźwiękochłonno-izolacyjne: podstawy projektowania i stosowania", Wydawnictwa AGH, Kraków 1998.
- J. Nurzyński, "Akustyka w budownictwie", PWN, Warszawa 2018.
- J. Sikora, "Wytyczne dla projektantów zabezpieczeń wibroakustycznych dotyczące możliwości stosowania nowego zestawu dźwiękochłonno-izolacyjnych przegród warstwowych", Wydawnictwa AGH, Kraków 2013.
- J. Sikora, K. Kosała, "Rozwiązania ograniczające hałas uderzeniowy prasy mechanicznej", "Bezpieczeństwo Pracy - Nauka i Praktyka" 4/2002, s. 21-24.
- K. Kosała, R. Olszewski, "Płytowe ustroje dźwiękochłonne - rozwiązania konstrukcyjne i obliczenia symulacyjne", "IZOLACJE" 10/2017, s. 60-64.
- J. Sikora, "Przegrody warstwowe stosowane w rozwiązaniach ograniczających hałas maszyn i urządzeń", "Bezpieczeństwo Pracy - Nauka i Praktyka" 8/2012, s. 26-31.
- J. Sikora, "Warstwy gumowe w rozwiązaniach zabezpieczeń wibroakustycznych", Wydawnictwa AGH, Kraków 2011.
- D.A. Bies, C.H. Hansen, "Engineering noise control, theory and practice", Spon Press, London - New York 2009.
- L. Majkut, R. Olszewski, "Modelowanie izolacyjności akustycznej przegród jednorodnych", "Autobusy. Eksploatacja i Testy" 12/2018, s. 553-556.
- K. Kosała, "Calculation models for analyzing the sound insulating properties of homogeneous single baffles used in vibroacoustic protection", "Applied Acoustics" 146/2019, s. 108-117.
- K. Kosała, L. Majkut, R. Olszewski, "Modelowanie izolacyjności akustycznej przegród Metodą Statystycznej Analizy Energii", "Autobusy. Eksploatacja i Testy" 12/2018, 106-109.
- J. Sadowski, "Podstawy izolacyjności akustycznej ustrojów", Państwowe Wydawnictwo Naukowe, Warszawa 1973.
- EN ISO 10140-2: 2011, "Akustyka. Pomiar laboratoryjny izolacyjności akustycznej elementów budowlanych. Część 2: Pomiar izolacyjności od dźwięków powietrznych".
- EN ISO 717-1-08:2013, "Akustyka. Ocena izolacyjności akustycznej w budynkach i izolacyjności akustycznej elementów budowlanych. Część 1: Izolacyjność od dźwięków powietrznych".
- AFMG SoundFlow Software Manual. Ahnert Feistel Media Group 2011.