Metakaolinit jako dodatek do betonu
Metakaolin as a concrete additive
Metakaolinit
Autorzy
Według normy PN-EN 206:2014 [1] dodatkiem do betonu nazywany jest drobnoziarnisty materiał nieorganiczny, używany w celu polepszenia określonych właściwości betonu lub osiągnięcia specjalnych właściwości.
Zobacz także
BASCOGLASS Sp. z o. o. Pręty kompozytowe do zbrojenia betonu
Pręty kompozytowe wykorzystywane są w konstrukcjach budowlanych od kilkudziesięciu lat. Wysoka odporność na korozję, duża wytrzymałość na rozciąganie, obojętność elektromagnetyczna oraz łatwość cięcia...
Pręty kompozytowe wykorzystywane są w konstrukcjach budowlanych od kilkudziesięciu lat. Wysoka odporność na korozję, duża wytrzymałość na rozciąganie, obojętność elektromagnetyczna oraz łatwość cięcia to główne czynniki decydujące o wyborze prętów kompozytowych jako zbrojenia konstrukcji. Liczne realizacje, w których zastosowano takie zbrojenie oraz pozytywne wyniki wielu badań świadczą o tym, iż jest ono dobrą alternatywą dla klasycznej stali zbrojeniowej.
dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Przykłady zastosowania prętów FRP oraz deskowań traconych
Pręty kompozytowe stwarzają wiele możliwości zastosowania w konstrukcjach budowlanych wszędzie tam, gdzie tradycyjne zbrojenie stalowe przestaje być efektywne. Wśród nich największą popularnością w realizacjach...
Pręty kompozytowe stwarzają wiele możliwości zastosowania w konstrukcjach budowlanych wszędzie tam, gdzie tradycyjne zbrojenie stalowe przestaje być efektywne. Wśród nich największą popularnością w realizacjach budowlanych cieszą się pręty kompozytowe oparte na włóknie szklanym. Ciekawą propozycją wykorzystania materiałów FRP jest ich zastosowanie w budownictwie betonowym jako deskowanie tracone. Nie jest to metoda powszechna i znajduje uznanie głównie w Stanach Zjednoczonych.
inż. Łukasz Górecki, mgr inż. Krzysztof Grzegorzewicz Keramzyt i styropian jako lekkie wypełnienia nasypów drogowych
Intensywny rozwój infrastruktury drogowej skutkuje prowadzeniem nowych szlaków komunikacyjnych na terenach dotąd niewykorzystywanych ze względu na wystąpienie w podłożu gruntów słabych i bardzo ściśliwych....
Intensywny rozwój infrastruktury drogowej skutkuje prowadzeniem nowych szlaków komunikacyjnych na terenach dotąd niewykorzystywanych ze względu na wystąpienie w podłożu gruntów słabych i bardzo ściśliwych. W takich przypadkach najczęściej stosuje się wzmocnienie podłoża poprzez zastosowanie pali, kolumn, zbrojenia geosyntetykami.
Rozróżnia się dodatki:
- typu I - są to dodatki prawie obojętne i należą do nich wypełniacze mineralne i barwnik,
- typu II - są to dodatki wykazujące aktywność puclanową i należą do nich m.in. pyły krzemionkowe, popioły lotne, mielony granulowany żużel wielkopiecowy oraz metakaolinit [1].
Zadaniem dodatków jest w znacznym stopniu polepszenie wybranych właściwości betonu, dodatkowo powodują oszczędność wynikającą z eliminacji części cementu. Są one także uzupełnieniem pylastych frakcji kruszywa poprawiających urabialność mieszanki betonowej [2].
Wytwórnie cementowe odpowiedzialne są za około 5% światowej emisji CO2. Wytworzenie około jednej tony cementu powoduje emisję do atmosfery około 0,8 tony CO2, gdzie około 0,5 tony CO2 pochodzi z rozkładu kamienia wapiennego, a reszta pochodzi ze spalania paliw [3]. Aby zneutralizować ten negatywny wpływ na środowisko, stosuje się dodatki mineralne. Głównym ze sposobów polepszenia ekoefektywności cementów jest stosowanie dodatków mineralnych jako zamienników klinkieru [4].
Metakaolinit jest cenionym dodatkiem do betonów. Jego wysoka aktywność pucolanowa powoduje, że z powodzeniem może pełnić rolę substytutu cementu i być stosowany jako dodatkowy składnik betonów poprawiający jego szczelność [5-7].
Budowa i właściwości metakaolinitu
Metakaolinit jest wydajnym materiałem o aktywności pucolanowej, może zastępować część cementu w zaprawach i betonie. Jest to minerał powstający w procesie prażenia w temperaturze 700-900°C naturalnego kaolinitu [5].
Kaolinit należy do minerałów ilastych o budowie pakietowej dwuwarstwowej. Wzór krystalochemiczny pakietu kaolinitu ma postać Al4[Si4O10](OH)8, a element strukturalny kaolinitu zbudowany jest z warstwy tetraedrycznej krzemowo-tlenowej oraz warstwy oktaedrycznej glinowo-tlenowo-wodorotlenowej.
Dehydroksylacja kaolinitu zachodzi już w temperaturze 550°C [5], a proces ten można opisać równaniem:
w temperaturze ~ 500°C
Al203 · 2SiO2 · 2H2O → Al203 · 2SiO2 · 2H2O [5]
kaolinit metakaolinit
Wytwarzanie metakaolinitu jest procesem dużo mniej energochłonnym niż produkcja cementu, dlatego że zarówno temperatura, jak i czas wypalania są niższe. Według [8] na wytworzenie jednej tony metakolinitu potrzebne jest około 80% mniej energii niż do wytworzenia cementu.
Metakaolinit a produkty hydratacji cementu portlandzkiego
Podstawowymi minerałami wiążącymi cementu portlandzkiego są alit (3CaO · SiO2) i belit (2CaO · SiO2), które przy udziale wody i zachodzących reakcji tworzą uwodnione krzemiany wapnia. W wyniku zachodzących w cemencie portlandzkim reakcji alitu i belitu wydzielane są znaczne ilości wodorotlenku wapnia Ca(OH)2. Metakaolinit, zawierający aktywne formy tlenków glinu i krzemu, w obecności wody wchodzi w reakcję z wodorotlenkiem wapnia, w wyniku której powstają produkty zbliżone pod względem struktury i składu chemicznego do produktów hydratacji cementu portlandzkiego [9].
Aby była możliwa reakcja pucolanowa metakaolinitu, niezbędny jest wodorotlenek wapnia. Przy większych zawartościach metakaolinitu może zostać zużyta całość CH. Kostuch i inni [10] podali, że do całkowitego związania znajdującego się w betonie wodorotlenku w 28 dni jest wymagane 20% zastąpienia cementu przez metakaolinit. Wild i Khatib [11] wykazali złożoność reakcji metakaolinitu w obecności wody z produktami hydratacji cementu portlandzkiego. Zaobserwowali w badaniach zaczynów i zapraw, że po 14 dniach wiązania występuje minimum zawartości CH. Zmniejszenie zawartości wodorotlenku wapnia dowodzi o intensywności powstałych w tym czasie reakcji.
Wpływ dodatku metakaolinitu na wytrzymałość na ściskanie, zginanie i odporność na pękanie kompozytów o matrycy cementowej
Liczne badania dotyczące rozwoju wytrzymałości betonów i zapraw, które zawierają dodatek metakaolinit świadczą o tym, że przy odpowiednim dozowaniu tego dodatku można uzyskać poprawę właściwości mechanicznych, szczególnie we wczesnych okresach twardnienia [12]. Wzrost wytrzymałości na ściskanie, zginanie w pierwszych dniach dojrzewania stwardniałych zaczynów, zapraw i betonów jest uzależniony od rodzaju i udziału metakaolinitu.
Whild, Khatib i Jones [13] stwierdzili, że wzrost wytrzymałości na ściskanie betonów na skutek zastosowania metakaolinitu, częściowo zastępującego cement, jest spowodowany trzema efektami:
- efektem wypełnienia,
- efektem przyśpieszenia hydratacji cementu portlandzkiego (już w pierwszych 24 godzinach)
- oraz efektem pucolanowej reakcji metakaolinitu z CH, której maksimum przypada między 7 a 14 dniem twardnienia. Wykazali, że optymalny udział dodatku może być zależny od wieku betonu. Po 90 dniach optymalny okazał się 20% udział metakaolinitu w stosunku do masy cementu.
Poon i inni [14] wykazali także, że metakaolinit wpływa korzystnie na wytrzymałość na ściskanie dzięki efektowi uszczelnienia mikrostruktury betonu (mniejsza porowatość betonu). W swoich badaniach Ponn i in. [14] podali, że najkorzystniejszym udziałem dodatku metakaolinitu w aspekcie wytrzymałości na ściskanie jest 10% jego udział, co potwierdziły badania betonów o w/s = 0,3 i 0,5.
Quian i Li [15] stwierdzili, że wraz ze wzrostem udziału metakaolinitu zwiększa się wytrzymałość betonu na ściskanie, zginanie i rozciąganie. Wykazali, że przyrostowi wytrzymałości na ściskanie przy zwiększeniu udziału metakaolinitu towarzyszy mniejszy przyrost wytrzymałości na zginanie oraz rozciąganie, co świadczy o wzroście kruchości tych betonów wraz ze wzrostem udziału matakaolinitu.
Konkol i Pyra przedstawili w pracy [16] wyniki badań betonów modyfikowanych zróżnicowanym udziałem metakaolinitu produkcji krajowej. Potwierdzili oni, że zastąpienie cementu 5% metakaolinitu powoduje wzrost wytrzymałości na ściskanie i wodoszczelności betonu. Przy wprowadzeniu zwiększonej ilości 10% i 15% metakaolinitu uzyskuje się znacznie większe korzyści. Dozowanie 15% metakaolinitu jako zamiennika cementu spowodowało, w porównaniu do betonu referencyjnego, wzrost wytrzymałości na ściskanie o ponad 23%, obniżenie nasiąkliwości o 42,5% oraz mniejszą głębokość penetracji wody pod ciśnieniem o prawie 78%.
Pavlíková i in. [17] wykazali, że częściowe zastąpienie cementu metakaolinitem polepsza wytrzymałość na ściskanie o 10%, a na rozciąganie przy zginaniu o 50%. Dodatkowo wpływ metakaolinitu jest we wszystkich przypadkach korzystniejszy w odniesieniu do wytrzymałości na rozciąganie, co wykazuje duże znaczenie szczególnie w przypadku budowy dróg. Zastąpienie 10-15% cementu metakaolinitem wydaje się optymalne, natomiast zaprawy, w których zastąpiono 10% cementu. wykazywały lepsze właściwości.
Pod względem poprawy właściwości mechanicznych betonu Konkol [6, 7] wykazał, że dodatek metakaolinitu może być stosowany jako substytut cementu i w tym obszarze może być uważany za równie cenny dodatek, jak dobrze już rozpoznany pył krzemionkowy. Konkol [7] wykazał także, że betony z dodatkiem do 17,5% metakaolinitu w stosunku do masy cementu, użytego jako częściowy substytut cementu, charakteryzują się nie tylko większą wytrzymałością na ściskanie, ale również większą odpornością na pękanie w porównaniu z betonami bez dodatku metakaolinitu. Wraz z wiekiem tych betonu następuje wzrost wytrzymałości na ściskanie i odporności na pękanie [7].
Inne pozytywne skutki zastosowania dodatku metakaolinitu do betonów i zapraw
Skurcz i pełzanie
Niekorzystne skutki dla całej konstrukcji, jak i betonu może wywołać zjawisko skurczu. Groźnym zjawiskiem dla betonu jest również pełzanie, które jest związane z długotrwałym obciążeniem elementu wywołując odkształcenia. Brooks i Megat Johari [18] wykazali pozytywne działanie dodatku metakaolinitu na skurcz i pełzanie betonów. Stwierdzili, że metakaolinit w ilości powyżej 10% zmniejsza całkowity skurcz i pełzanie betonu.
Odporność na wysoką temperaturę
Badania odporności zapraw i betonów z dodatkiem metakaolinitu na ekspozycję wysokiej temperatury prowadzili między innymi Morsy i inni [19], którzy w wyniku zastąpienia cementu 10 i 15% udziałem nanometakaolinitu również w temperaturze powyżej 600°C uzyskali wzrost wytrzymałości na ściskanie i zginanie zapraw i betonów.
Właściwości sorpcyjne betonów modyfikowanych metakaolinitem
Ramezanianpour i Jovein [12] stwierdzili na podstawie wyników współczynnika sorpcyjności, że dodatek metakaolinitu w ilości 10% daje w porównaniu z innymi poziomami zamiany najlepsze wyniki niezależnie od stosunku wody/spoiwo i wieku betonu oraz kontrolnymi betonami. Uzyskali oni zwiększenie współczynnika sorpcyjności w przypadku niektórych betonów z udziałem 15% metakaolinitu w porównaniu ze współczynnikiem sorpcyjności betonu kontrolnego.
Wodoprzepuszczalność
Vejmelkova i inni [20] w swojej pracy przeprowadzili badanie wodoszczelności betonu samozagęszczalnego modyfikowanego metakaolinitem. Dodatek metakaolinitu został zastosowany w ilości 2/3 części cementu. Maksymalna głębokość penetracji pod ciśnieniem wody po 28 dniach była niższa ponad 40% niż w betonie niezawierającym metakaolinitu. Natomiast po 90 dniach zjawisko się odwróciło i lepszy okazał się beton bez metakaolinitu. Gorsze wyniki, które zostały uzyskane dla betonu modyfikowanego, mogły być spowodowane niższym stosunkiem woda/spoiwo betonu niemodyfikowanego w porównaniu z betonem zawierającym dodatek metakaolinitu oraz użyciem różnych rodzajów cementów CEM I i CEMIII/A do ich wykonania.
Porowatość
Na właściwości i trwałość konstrukcji betonowej ma duży wpływ rozkład wielkości porów i całkowita porowatość. Szerokie badania na temat porowatości zaczynów cementowych prowadzili Khatib i Wild [21]. Poddali analizie badań porowatości zaczyny ze zmiennym udziałem metakaolinitu 5%, 10%, 15% masy cementu. Wykazali, że udział porów większych o promieniu > 0,02 mm w zaczynie zmniejsza się dzięki większemu udziałowi metakaolinitu oraz czasu utwardzania.
Konkol [7] wykazał, że dodatek metakaolinitu w ilości do 17,5% masy cementu wprowadzony jako częściowy substytut cementu w betonie powoduje zmniejszenie całkowitej porowatości w betonie. Wzrost objętości porów w betonie o promieniach 0,8-2 nm jest spowodowany wprowadzeniem dodatku metakaolinitu, a przy udziale metakaolinitu w betonie wynoszącym 17,5% masy cementu także porów o promieniach 2-10 nm.
Dodatek metakaolinitu do betonu w przypadku porów o większych promieniach powoduje zmniejszenie rozmiarów tych porów. Stwierdzony wzrost objętości porów o średnicach do 2 nm nie wpływa negatywnie na właściwości związane z transportem agresywnych czynników i mrozoodporności betonów z dodatkiem metakaolinitu [7].
Odporność na korozję chlorkową
Chlorki są jednym z zagrożeń, które powodują korozję betonu i stali zbrojeniowej. Potwierdzeniem pozytywnego działania metakaolinitu jako inhibitora dyfuzji chlorków zaprawach są wyniki badań Courard i innych [22]. Autorzy ci wykazali, że optymalny udział metakaolinitu wynosi od 10 do 15% w zaprawie. Czas potrzebny do rozpoczęcia transferu jonów CL- przez próbkę określili w dniach. Tranfer nastąpił w zaprawie z 15% dodatkiem metakaolinitu po 203 dniach, z 20% dodatkiem metakaolinitu po roku nie stwierdzono rozpoczęcia transferu jonów CL-, natomiast w zaprawie bez dodatku transfer nastąpił po 13 dniach.
Odporność na korozję siarczanową
Projektując beton, należy przeciwdziałać zagrożeniu korozyjnemu. Przykładem dodatku poprawiającego odporność na korozję siarczanową jest metakaolinit. Między innymi Pytel [23], stosując w zaprawach metakaolinit w ilości 20% i 30% masy cementu, potwierdził, że dodatek metakaolinitu zwiększa odporność zapraw na działanie korozyjne siarczanów, w tym szczególnie MgSO4.
Zastosowanie matakaolinitu
Materiały ilaste mają szerokie zastosowanie w przemyśle materiałów budowlanych i ceramiki. Mogą być stosowane w produkcji porcelany, płytek ceramicznych, wyrobów garncarskich [7, 24] oraz w przemyśle papierniczym, gumowym, malarskim, spożywczym, elektronicznym, mydlarskim, urządzeń sanitarnych i tworzyw sztucznych. Mogą być także wykorzystywane do rekultywacji terenów skażonych metalami ciężkimi lub produktami ropopochodnymi [7, 25]. Prażony kaolin stosowany jest w produkcji betonów lekkich [26], do renowacji zabytków [27], a przede wszystkim jako cenny dodatek typu II do betonów.
Według [28] dodatek metakaolinitu ma szerokie zastosowanie w przemyśle budowlanym w obiektach budowlanych naziemnych i podziemnych. Może być stosowany w mieszankach betonowych wykonywanych na budowie oraz w betonach towarowych, prefabrykowanych, różnych klasy zapraw itd. Dodatek metakaolinitu może być stosowany jako dodatek do tynków i zapraw zwykłych oraz barwionych, ponieważ zapobiega powstawaniu wykwitów wapiennych.
Wnioski
Aktualnym kierunkiem badań i ich aplikacji jest dążenie do stosowania w technologii betonu i zapraw nie tylko materiałów pochodzących z recyklingu, ale i materiałów, które są przyjazne środowisku. Stosowanie metakaolinitu jako zamiennika części cementu w betonie ma ogromne znaczenie w budownictwie zrównoważonego rozwoju i ochrony środowiska w odniesieniu do konstrukcji budowlanych.
Przeanalizowanie korzyści wynikających z zastosowania metakaolinitu doprowadzi z pewnością do zwiększenia zapotrzebowania przez firmy wytwarzające mieszanki betonowe, zaprawy na ten materiał. W ostatnim czasie przeprowadzono liczne badania mające na celu ocenę wpływu metakaolinitu, jako częściowego zamiennika cementu na parametry techniczne kompozytów o matrycy cementowej. Wymienione źródła świadczą o tym, że metakaolinit może być stosowany w przemyśle budowlanym jako efektywny dodatek o wysokiej aktywności pucolanowej.
Literatura
- PN-EN 206:2014, "Beton. Wymagania, właściwości, dodatkiem produkcja i zgodność".
- Z. Jamroży, "Beton i jego technologie", PWN, Warszawa 2015.
- E. Gartner, "Industrially interesting approaches to low-CO2 cement", "Cement and Concrete Research" 9(34)/2004, pp. 1489-1498.
- Ch. He, B. Osbaeck, E. Makovicky, "Pouzzolanic reactions of six principal clay minerals: action, reactivity assessment and technological effects", "Cement and Concrete Research" 25/1995, pp. 1691-1702.
- W. Kurdowski, "Chemia cementu i betonu", Stowarzyszenie Producentów Cementu, Wydawnictwo Naukowe PWN, Kraków-Warszawa 2010.
- J. Konkol, "Metakaolinit i popiół fluidalny jako alternatywne w stosunku do pyłów krzemionkowych dodatki mineralne do betonu", "Inżynieria i Budownictwo" 9/2012, s. 503-507.
- J. Konkol, "Struktura i właściwości kompozytów cementowych modyfikowanych metakaolinitem", Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2016.
- R. San Nicolas, "Characteristics and applications of flash metakaolins", "Applied Clay Science" 83-84/2013, pp. 253-262.
- W. Kurdowski, "Uwodnione gliniany wapniowe w zaczynie cementowym - przegląd stanu zagadnienia", "Cement Wapno Beton" 5/2009, s. 255-266.
- J.A. Kostuch, V. Waltersand, T.R. Jones, "High performance concretes incorporateing metakaolin", Inter Conference on Concrete 2000: Economic and Durable Construction Through Excellence, K. Ravindra, M. Roderick (eds.), University of Dundee, II, 1993, pp. 1779-1811.
- S. Wild, J.M. Khatib, "Portlandite consumption in metakaolin cement pastes and mortars", "Cement and Concrete Research", 1(27)/1997, pp. 137-146.
- A.A. Ramezanianpour, H.B. Jovein, "Influence of metakaolin as supplementary cementing material on strength and durability of concretes", "Construction and Building Materials" 30/2012, pp. 470-479.
- S. Wild, J.M. Khatib, A. Jones, "Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete", "Cement and Concrete Research" 10(26)/1996, pp. 1537-1544.
- C.S. Poon, S.C. Kou, L. Lam, "Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete", "Construction and Building Materials", 10 (20)/2006, pp. 858-865.
- X. Qian, Z. Li, "The relationships between stress and strain for high-performance concrete with metakaolin", "Cement and Concrete Research" 11(31)/2001, pp. 1607-1611.
- J. Konkol, M. Pyra, "Wybrane właściwości betonów modyfikowanych zmiennym udziałem dodatku metakaolinitu", Czasopismo Inżynierii Lądowej, Środowiska i Architektury, JCEEA, t. XXXI, z. 61 (3/II/14), 2014, s. 287-296.
- M. Pavlíková, T. Brtník, M. Keppert, R. Černý, "Wpływ metakaolinitu, jako częściowego zamiennika cementu, na właściwości zapraw wysokowartościowych", "Cement Wapno Beton" 9/2009, s. 113-122.
- J.J. Brooks, M.A. Megat Johari, "Effect of metakaolin on creep and shrinkage of concrete", "Cement and Concrete Research" 6(23)/2001, pp. 495-502.
- M.S. Morsy, Y.A. AL-Salloum, H. Abbas, S.H. Alsayed, "Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures", "Construction and Buildings Materials" 35/2012, pp. 900-905.
- E. Vejmelkova, M. Keppert, S. Grzeszczyk, B. Skaliński, R. Cerny, "Properties of self-compacting concrete mixtures containing metakaolin and blast furnace slag", "Construction and Buildings Materials" 3(25)/2011, pp. 1325-1331.
- J.M. Khatib, S. Wild, "Pore size distribution of metakaolin paste", "Cement and Concrete Research" 10(26)/1996, pp. 1545-1553.
- L. Courard, A. Darimont, M. Schouterden, F. Ferauche, X. Willem, R. Degeimbre, "Durability of mortars modified with metakaolin", "Cement and Concrete Research" 33/2003, pp. 1473-1479.
- Z. Pytel, "Odporność chemiczna zapraw cementowych z dodatkiem metakaolinitu", "Cement Wapno Beton" 6/2005, s. 330-338.
- R.E. Grim, "Clay Mineralogy”, NcGraw-Hill Book Co., New York 1968.
- https://pl.wikipedia.org/wiki/Kaolinit (dostęp 7 marca 2019 r.).
- H.K. Kim, E.A. Hwang, H.K. Lee, "Impacts of metakaolin of lightweight concrete by type of fine aggregate", "Construction and Buildings Materials" 36/2012, pp. 719-726.
- E. Aggelakopoulou, A. Bakolas, A. Moropoulou, "Properties of lime-metakaolin mortars for the restoration of historic masonries", "Applied Clay Science" 1(53)/2011, pp. 15–19
- https://www.astra-polska.com/oferta/betony-przemyslowe/astra-mk-40/(dostęp 7 marca 2019 r.).