Obliczanie strat ciepła przez przegrody stykające się z gruntem
Budynki niepodpiwniczone
W obowiązującym rozporządzeniu ministra infrastruktury w sprawie metodologii obliczania charakterystyki energetycznej budynku opis procedury obliczania strat ciepła przez przegrody stykające się z gruntem ogranicza się do wskazania normy PN-EN 12831:2006 , według której należy przeprowadzić obliczenia. Jednak przywołana norma nie wyczerpuje problematyki przegród stykających się z gruntem, dlatego problem ten bardzo często pojawia się w dyskusjach przed ministerialnymi egzaminami czy też w trakcie sporządzania świadectw szkoleniowych. Jak zatem uniknąć błędów merytorycznych, skoro w omawianym zakresie obowiązuje kilka różnych dokumentów, w których pojawiają się rozbieżności w nazewnictwie oraz w samych procedurach obliczeniowych?
Zobacz także
Bostik Bostik AQUASTOPP – szybkie i efektywne rozwiązanie problemu wilgoci napierającej
Bostik to firma z wieloletnią tradycją, sięgającą 1889 roku, oferująca szeroką gamę produktów chemii budowlanej dla profesjonalistów i majsterkowiczów. Producent słynie z innowacyjnych rozwiązań i wysokiej...
Bostik to firma z wieloletnią tradycją, sięgającą 1889 roku, oferująca szeroką gamę produktów chemii budowlanej dla profesjonalistów i majsterkowiczów. Producent słynie z innowacyjnych rozwiązań i wysokiej jakości preparatów, które znajdują zastosowanie w budownictwie, przemyśle i renowacji.
Fiberglass Fabrics s.c. Wiele zastosowań siatki z włókna szklanego
Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z...
Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z włókna szklanego pozwala na przedłużenie żywotności całego systemu ociepleniowego w danym budynku. W sklepie internetowym FFBudowlany.pl oferujemy szeroki wybór różnych gramatur oraz sposobów aplikacji tego produktu.
Parati Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć
Budowa domu jest zadaniem niezwykle trudnym, wymagającym od inwestora podjęcia wielu decyzji, bezpośrednio przekładających się na efekt. Dokłada on wszelkich starań, żeby budynek był w pełni funkcjonalny,...
Budowa domu jest zadaniem niezwykle trudnym, wymagającym od inwestora podjęcia wielu decyzji, bezpośrednio przekładających się na efekt. Dokłada on wszelkich starań, żeby budynek był w pełni funkcjonalny, wygodny oraz wytrzymały. A jak pokazuje praktyka, aby osiągnąć ten cel, należy rozpocząć od podstaw. Właśnie to zagwarantuje nam solidna płyta fundamentowa.
W rozumieniu rozporządzenia w sprawie metodologii obliczania charakterystyki energetycznej budynku przez kondygnację podziemną rozumie się kondygnację, której więcej niż połowa wysokości w świetle, ze wszystkich stron budynku, znajduje się poniżej poziomu przylegającego, projektowanego lub urządzonego terenu, a także każdą sytuowaną pod nią kondygnację.
Według normy PN-EN 12831:2006 podziemie budynku występuje wówczas, jeśli więcej niż 70% powierzchni ścian zewnętrznych danego pomieszczenia styka się z gruntem. Sprawę rozstrzyga dopiero norma PN-EN ISO 13370:2008, która nie stawia ograniczeń co do zagłębienia piwnic. Pozwala również na policzenie budynku częściowo podpiwniczonego, traktując go jak z całkowitym podpiwniczeniem o zagłębieniu równym ½ z.
Od 1974 r. obowiązuje wymaganie stosowania izolacji cieplnej w pasie poziomym podłogi lub w pasie pionowym przyściennym o szerokości 1,0 m, które zostało sformułowane w wyniku badań prowadzonych w latach 1972–73 przez J.A. Pogorzelskiego. Izolacja ta, określana w rozporządzeniu w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (WT), jako izolacja obwodowa, w normach nosi nazwę odpowiednio:
- według PN-EN ISO 13370:2008 [5] – „izolacji krawędziowej” – i jest obliczeniowo włączana do wartości współczynnika przenikania ciepła podłogi,
- według PN-EN 12831:2006 [4] – „izolacji bocznej” – i nie jest uwzględniana w wartości współczynnika przenikania ciepła podłogi.
W zależności od dokumentu oznaczenia współczynnika przenikania ciepła oraz procedury jego wyznaczania są różne (tabela 1).
Procedury wyznaczania współczynnika przenikania ciepła przegród stykających się z gruntem
Niezależnie od procedury przygotowuje się dane wyjściowe, które zawierają:
- geometrię podłogi,
- układ warstw w podłodze (płyty z betonu zwykłego i cienkie pokrycia podłogi można pominąć; zaleca się również pominięcie chudego betonu poniżej płyty [5] – rys. 1),
- opory przejmowania dla podłogi według PN-EN ISO 6946:2008 [3]: Rsi = 0,17 (m²·K)/W; Rse = 0 (m²·K)/W,
- w przypadku budynku podpiwniczonego – układ warstw w ścianie piwnic oraz opory przejmowania w odniesieniu do ściany według PN-EN ISO 6946:2008 [3]: Rsi = 0,13 (m²·K)/W; Rse = 0 (m²·K)/W.
Na podstawie geometrii podłogi ustala się parametr obliczeniowy B’ (tabela 2) [5, 6, 8]:
gdzie:
Ag − powierzchnia rozpatrywanej płyty podłogowej łącznie ze ścianami zewnętrznymi i wewnętrznymi [m2],
P – obwód rozpatrywanej płyty podłogowej [m].
Znając geometrię węzła, należy stworzyć jego model obliczeniowy, uwzględniający tylko warstwy mające istotne znaczenie w transporcie ciepła (rys. 1). Według normy EN 12831:2006 [4] równoważny współczynnik przenikania ciepła Uequiv,bf elementu budynku (ściany i podłogi stykające się z gruntem) odczytuje się z podanych wykresów lub tablic, przy założeniu, że przewodność cieplna gruntu wynosi 2,0 W/(m²·K).
Na rys. 2 przedstawiono sposób określania równoważnego współczynnika przenikania ciepła podłogi stykającej się z gruntem Uequiv,bf przy z = 0 m, podłoga na poziomie terenu.
Na podstawie wykresu, znając wartość współczynnika przenikania ciepła podłogi oraz wartość charakterystycznego parametru B’, można wyznaczyć wartość Uequiv,bf.
Wartość równoważnego współczynnika przenikania ciepła Uequiv,bf rośnie wraz ze wzrostem wartości współczynnika przenikania ciepła Upodłogi i jednocześnie rośnie wraz ze zmniejszaniem się wartości parametru B’.
Największa wartość równoważnego współczynnika Uequiv,bf dotyczy podłogi bez izolacji i wynosi 1,30 W/(m²·K), gdy B’=2 m.
Opisane procedury bazują na normie PN-EN ISO 13370:2008 [5], w której zawarte są wzory uwzględniające szczególne przypadki posadowienia budynków. Wprowadzono również dodatkowe parametry obliczeniowe:
- w przypadku budynku niepodpiwniczonego – dane dotyczące izolacji krawędziowej (D – zagłębienie izolacji, dn – grubość warstwy izolacji),
- grubość ekwiwalentna dt [m] w odniesieniu do podłóg:
- dodatkowa grubość ekwiwalentna izolacji krawędziowej d’ [m]:
gdzie:
w – grubość ściany zewnętrznej [m],
λ – współczynnik przewodzenia ciepła gruntu; gliny lub iłu – 1,5, piasku lub żwiru – 2,0, litej skały – 3,5 W/(m·K); gruntu nieznanego – 2,0 W/(m·K),
Rsi – według normy PN-EN ISO 6946:2008 [3],
Rse – według normy PN-EN ISO 6946:2008 [3],
Rf – opór cieplny podłogi oraz izolacji, z pominięciem oporów płyt betonowych, chudych betonów i cienkich wykładzin podłogowych [(m²·K)/W],
R’ – dodatkowy opór cieplny izolacji krawędziowej (różnica między oporem izolacji i oporem gruntu lub płyty, którą zastępuje izolacja).
Płyta na gruncie nieizolowana lub średnio izolowana, dt < B’:
Płyta na gruncie dobrze izolowana dt ≥ B’:
W rozpatrywanym przypadku rozważa się dwa warianty:
- płyta na gruncie bez izolacji krawędziowej:
- płyta na gruncie z izolacją krawędziową:
gdzie:
Ψg,e – zmiana strumienia ciepła wywołana przez izolację krawędziową [W/(m·K)];
- dla poziomej izolacji krawędziowej:
- dla pionowej izolacji krawędziowej:
Jeżeli węzeł styku budynku z gruntem jest zabezpieczony przed przemarzaniem zarówno pionową, jak i poziomą izolacją krawędziową, to do dalszych obliczeń uwzględnia się tę, której wartość U jest niższa.
Obliczanie strat ciepła do gruntu
W metodologii [8] straty ciepła przez przenikanie przez przegrody stykające się z gruntem są wyznaczane według ogólnego wzoru:
gdzie:
btr,i − współczynnik redukcyjny obliczeniowej różnicy temperatur i-tej przegrody: ściany zewnętrzne – 1,0, podziemie bez okien/drzwi zewnętrznych – 0,5, podziemie z oknami/drzwiami zewnętrznymi – 0,8, podłoga na gruncie – 0,6,
A − pole powierzchni i-tej przegrody otaczającej przestrzeń o regulowanej temperaturze, obliczonej według wymiarów zewnętrznych przegrody (wymiary okien i drzwi przyjmuje się jako wymiary otworów w ścianie) [m],
Ui − współczynnik przenikania ciepła i-tej przegrody pomiędzy przegrodą ogrzewaną i stroną zewnętrzną; w przypadku okien i drzwi przyjmuje się według aprobaty technicznej, a w wypadku podłogi na gruncie przyjmowany jako Ug [W/(m²·K)],
Ψi − liniowy współczynnik dla mostka liniowego według PN-EN ISO 14683:2008 [6] dla wymiarowania zewnętrznego [W/(m·K)]. Wpływ gruntu na straty ciepła w stosunku do przegród stykających się z powietrzem zewnętrznym jest ujęty współczynnikiem btr.
Miesięczne straty ciepła przez przenikanie:
gdzie:
θint,H – temperatura wewnętrzna dla okresu ogrzewania w budynku lub lokalu mieszkalnym przyjmowana zgodnie z wymaganiami zawartymi w przepisach techniczno-budowlanych [ºC],
tM – liczba godzin w miesiącu [h].
W przypadku wyznaczania współczynnika Ugr rozporządzenie [8] odsyła do normy PN-EN 12831:2006 [4]. Norma ta podaje również uproszczoną metodę wyznaczania współczynnika projektowych strat ciepła przez przenikanie z przestrzeni ogrzewanej (i) do gruntu (g) w warunkach ustalonych HT,ig:
gdzie:
fg1 − współczynnik korekcyjny uwzględniający wpływ rocznych wahań temperatury zewnętrznej (wartość orientacyjna = 1,45),
fg2 − współczynnik redukcji temperatury, uwzględniający różnicę między projektową temperaturą wewnętrzną a średnią roczną oraz projektową temperaturą zewnętrzną,
Ak − powierzchnia elementu budynku (k) stykająca się z gruntem [m²],
Uequiv,k − równoważny współczynnik przenikania ciepła elementu budynku (k) [W/(m²·K)] (w rozpatrywanym przypadku Uequiv,bf),
Gw – współczynnik korekcyjny uwzględniający wpływ wody gruntowej, jeżeli:
– odległość między poziomem wody gruntowej i poziomem posadzki piwnicy jest mniejsza niż 1 m Gw = 1,15,
– inne przypadki – Gw = 1,00.
Współczynnik redukcji temperatury fg2, uwzględniający różnicę między projektową temperaturą wewnętrzną a średnią roczną oraz projektową temperaturą zewnętrzną, oblicza się ze wzoru: f
gdzie:
θint,i − projektowa temperatura wewnętrzna przestrzeni ogrzewanej (i) [ºC],
θe − projektowa temperatura zewnętrzna [ºC],
θm,e − średnia roczna temperatura zewnętrzna [ºC].
Projektowa strata ciepła przez przenikanie z przestrzeni ogrzewanej do gruntu, wykorzystywana do określenia całkowitego projektowego obciążenia cieplnego:
Nie uwzględnia się w tym wypadku członu dotyczącego mostków termicznych. Należy podkreślić, że przedstawiona procedura dotyczy obliczenia obciążenia cieplnego potrzebnego do zapewnienia wymaganej wewnętrznej temperatury projektowej w znormalizowanych warunkach projektowych. Określony w normie sposób obliczania obciążenia cieplnego ma zastosowanie:
- przy doborze grzejników metodą pomieszczenie po pomieszczeniu lub przestrzeni ogrzewanej po przestrzeni ogrzewanej,
- przy doborze źródła ciepła
i nie jest właściwy do liczenia wymaganych metodologią strat ciepła przez przegrody stykające się z gruntem. Autorki artykułu zauważyły, że jest to często spotykany błąd obliczeniowy w sporządzanych świadectwach. Nie uniknięto go także w jednym z programów służących do sporządzania świadectw.
Jednocześnie norma PN-EN 12831:2006 [4] wskazuje, że strumień strat ciepła do gruntu może być obliczony w sposób szczegółowy według normy PN-EN ISO 13370:2008 [5]. Gdy średnia miesięczna temperatura wewnętrzna i zewnętrzna jest znana, miesięczną wielkość strumienia ciepła oblicza się następująco:
gdzie:
Hg – współczynnik przenoszenia ciepła przez grunt w stanie ustalonym między środowiskiem wewnętrznym i zewnętrznym:
Ψg – liniowy współczynnik przenikania ciepła związany z połączeniem ściana–podłoga [W/(m·K)],
Hpi – współczynnik okresowego przenoszenia ciepła, związany ze zmianami temperatury wewnętrznej w cyklu rocznym:
Hpe – współczynnik okresowego przenoszenia ciepła, związany ze zmianami temperatury zewnętrznej w cyklu rocznym:
δ – głębokość okresowego wnikania ciepła według tabeli 3,
θi,m – miesięczna średnia temperatura wewnętrzna w miesiącu m [ºC],
θe,m – miesięczna średnia temperatura zewnętrzna w miesiącu m [ºC],
θe – przeciętna roczna temperatura zewnętrzna [ºC],
θi – przeciętna roczna temperatura wewnętrzna [ºC].
Przytoczone wzory na Hpi i Hpe nie dotyczą podłogi z izolacją krawędziową [5].
Przykładowe obliczenia
Do przykładowych obliczeń strat ciepła przyjęto niewielki budynek jednorodzinny, wolno stojący, niepodpiwniczony. Na rys. 3 przedstawiono geometrię podłogi. Węzeł styku budynku z gruntem przyjęto według rys. 1. Założono, że budynek zlokalizowany jest w Gdańsku. Wymiar charakterystyczny podłogi obliczony został ze wzoru (1):
Obliczenie wykonano według trzech opisanych procedur. Jako parametr porównawczy przyjęto wielkość strumienia ciepła w miesiącu styczniu Φ. Wyniki przedstawiono w tabeli 4.
Podsumowanie
Wartości współczynnika U obliczone trzema metodami są porównywalne, ale w dalszym etapie obliczeń występują znaczne różnice. Trudno jest porównać otrzymane wartości H. Dla przyjętej strefy lokalizacji iloczyn współczynników we wzorze (13) wynosi:
W przypadku podłogi na gruncie iloczyn ten jest odpowiednikiem współczynnika redukcyjnej obliczeniowej różnicy temperatur btr. W rozporządzeniu [8] przyjęto btr = 0,6, co odpowiada najbardziej niekorzystnej wartości iloczynu (20) dla θint = 24ºC i V strefy klimatycznej. Natomiast współczynnik Hg liczony według PN-EN ISO 13370:2008 nie zależy od temperatur. Stąd też występują znaczne różnice pomiędzy tymi wartościami. Licząc miesięczny strumień ciepła Φ według PN-EN ISO 13370:2008 [5], uwzględnia się periodyczne wnikanie ciepła do gruntu (16). W rozporządzeniu zastosowano uproszczenie, pomijając ten efekt. Obliczenie ΦT,ig według PN-EN 12831:2006 [4] wymaga zastosowania projektowych temperatur zewnętrznych, a nie średnich miesięcznych, co dyskwalifikuje ten sposób obliczeń w metodzie miesięcznej wskazanej w metodologii. Przyjęcie współczynnika btr w metodzie uproszczonej rozporządzenia skutkuje zaniżeniem wartości współczynnika strat ciepła H o 40%. Nieuwzględnienie periodycznego wnikania ciepła do gruntu nadal nie niweluje tych różnic – miesięczny strumień ciepła Φm jest niższy o 25%. Należy zwrócić uwagę, że we wszystkich dokumentach za podstawową uważa się metodę dokładną, przedstawioną w normie PN-EN ISO 13370:2008 [5]. Uzyskane wyniki wskazują, jak duże jest niedoszacowanie w metodach uproszczonych.
Literatura
- „Budownictwo ogólne”, T. 2, Fizyka budowli, praca zbiorowa pod red. P. Klemma, Arkady, Warszawa 2005.
- PN-B-02020:1974 „Ogrzewnictwo. Współczynniki przenikania ciepła K dla przegród budowlanych”.
- PN-EN ISO 6946:2008 „Komponenty budowlane i elementy budynku. Opór cieplny i wspłczynnik przenikania ciepła. Metoda obliczania”.
- PN-EN 12831:2006 „Instalacje ogrzewcze w budynkach. Metoda obliczania projektowego obciążenia cieplnego”.
- PN-EN ISO 13370:2008 „Cieplne właściwości użytkowe budynków. Wymiana ciepła przez grunt. Metoda obliczania”.
- PN-EN ISO 14683:2008 „Mostki cieplne w budynkach. Liniowy wspłczynnik przenikania ciepła. Metody uproszczone i wartości orientacyjne”.
- J.A. Pogorzelski, „Fizyka cieplna budowli”, PWN, Warszawa 1976.
- Rozporządzenie Ministra Infrastruktury z dnia 6 listopada 2008 r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej (DzU z 2008 r. nr 201, poz. 1240).
- Rozporządzenie Ministra Infrastruktury z 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2002 r. nr 75, poz. 690 z późn. zm.).
- Ustawa z dnia 7 lipca 1994 r. – Prawo budowlane (DzU z 1994 r. nr 89, poz. 414 z pźn. zm.).
- J. Zembrowski „Ocieplenia fundamentów i podłóg na gruncie w budynkach energooszczędnych”, IZOLACJE nr 5/2008, s. 38–40.
WRZESIEŃ 2009