Hydroizolacje fundamentów z użyciem mas KMB
Cz. I. Projektowanie i wykonywanie według niemieckich wytycznych
Przykład i skutki złego zastosowania masy KMB
M. Rokiel
Bezwzględnym wymogiem bezproblemowej i długoletniej eksploatacji budynku jest jego poprawne (zgodne ze sztuką budowlaną) zaprojektowanie i wykonanie. Podstawą jest m.in. zastosowanie odpowiedniej hydroizolacji części zagłębionej w gruncie.
Zobacz także
Bostik Bostik AQUASTOPP – szybkie i efektywne rozwiązanie problemu wilgoci napierającej
Bostik to firma z wieloletnią tradycją, sięgającą 1889 roku, oferująca szeroką gamę produktów chemii budowlanej dla profesjonalistów i majsterkowiczów. Producent słynie z innowacyjnych rozwiązań i wysokiej...
Bostik to firma z wieloletnią tradycją, sięgającą 1889 roku, oferująca szeroką gamę produktów chemii budowlanej dla profesjonalistów i majsterkowiczów. Producent słynie z innowacyjnych rozwiązań i wysokiej jakości preparatów, które znajdują zastosowanie w budownictwie, przemyśle i renowacji.
Fiberglass Fabrics s.c. Wiele zastosowań siatki z włókna szklanego
Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z...
Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z włókna szklanego pozwala na przedłużenie żywotności całego systemu ociepleniowego w danym budynku. W sklepie internetowym FFBudowlany.pl oferujemy szeroki wybór różnych gramatur oraz sposobów aplikacji tego produktu.
Parati Płyta fundamentowa i jej zalety – wszystko, co trzeba wiedzieć
Budowa domu jest zadaniem niezwykle trudnym, wymagającym od inwestora podjęcia wielu decyzji, bezpośrednio przekładających się na efekt. Dokłada on wszelkich starań, żeby budynek był w pełni funkcjonalny,...
Budowa domu jest zadaniem niezwykle trudnym, wymagającym od inwestora podjęcia wielu decyzji, bezpośrednio przekładających się na efekt. Dokłada on wszelkich starań, żeby budynek był w pełni funkcjonalny, wygodny oraz wytrzymały. A jak pokazuje praktyka, aby osiągnąć ten cel, należy rozpocząć od podstaw. Właśnie to zagwarantuje nam solidna płyta fundamentowa.
Hydroizolacja nie jest elementem decydującym o bezpieczeństwie budynku, ma natomiast bezpośredni wpływ na komfort użytkowania obiektu oraz zdrowie przebywających w nim osób. Dlatego sposób zaprojektowania i wykonania powłok wodochronnych nie może być przypadkowy.
Uwagi dotyczące projektowania i wykonawstwa
Konstruowanie zabezpieczeń przeciwwodnych nie jest łatwe z powodu braku aktualnych norm, wytycznych i zaleceń. Normy europejskie definiują wprawdzie pewne wymagania stawiane materiałom hydroizolacyjnym (dzielą je na klasy), nic nie mówią jednak o możliwości zastosowania materiału (a w niektórych przypadkach wręcz wprowadzają w błąd). Ich użycie wynika bowiem nie ze spełnienia wymagań normowych, lecz z:
- analizy warunków gruntowo-wodnych i związanego z tym doboru rodzaju systemu (nie materiału) hydroizolacyjnego, z uwzględnieniem rozwiązania konstrukcyjnego fundamentów (płyty fundamentowej, ław, materiału ścian fundamentowych itp.),
- uwzględnienia przy doborze materiałów ewentualnej agresywności wód gruntowych,
- analizy możliwości wykonania detali (uszczelnień dylatacji, przejść rurowych itp.).
Dopiero na tym etapie przeprowadza się analizę parametrów materiału hydroizolacyjnego (przyczepności, elastyczności/zdolności mostkowania rys, odporności na obciążenia mechaniczne itp.).
Ze strony wykonawczej konieczne jest:
- przestrzeganie wymagań dotyczących stanu podłoża (równości, czystości, wysezonowania, wilgotności itp.),
- bardzo staranne i zgodne z technologią wykonanie uszczelnień tzw. trudnych i krytycznych miejsc (łączenia izolacji poziomej z pionową, dylatacji, przejść rurowych itp.)
- zabezpieczenie wykonanej powłoki wodochronnej przed uszkodzeniem w trakcie dalszych prac.
Masy KMB – charakterystyka
Jednym z częściej i coraz chętniej stosowanych materiałów są polimerowo-bitumiczne, grubowarstwowe masy uszczelniające, zwane w skrócie z j. niemieckiego masami KMB. Są to materiały jedno- lub dwuskładnikowe, bezzapachowe, bezrozpuszczalnikowe, o niemal natychmiastowej odporności na deszcz, pozwalające na szybkie zasypanie wykopów fundamentowych. Masy KMB w zależności od grubości warstwy mogą stanowić zarówno izolację przeciwwilgociową, jak i przeciwwodną.
Dostępne na rynku masy KMB różnią się liczbą składników, a co za tym idzie – sposobem i czasem schnięcia. Materiały jednoskładnikowe wiążą przez wysychanie. Czas wysychania zależy zasadniczo od warunków zewnętrznych, co może w pewnych sytuacjach przedłużać czas realizacji inwestycji (dopóki warstwa izolacji nie wyschnie, nie można ułożyć płyt ochronnych i zasypać wykopu). Innym niebezpieczeństwem jest możliwość zniszczenia warstwy izolacji przez np. niespodziewaną burzę – jednoskładnikowe materiały izolacyjne są odporne na deszcz po całkowitym wyschnięciu. Masy dwuskładnikowe na skutek pewnych specyficznych właściwości roztworu potrafią w czasie twardnienia wiązać nawet bez dostępu powietrza lub w obecności wody. Są one niemal natychmiast odporne na deszcz i szybko wiążą.
Wytyczne niemieckie dotyczące mas KMB
W maju 2010 r. ukazało się III wydanie niemieckiej instrukcji „Richtlinie für die Planung…” [1] zastępujące wydanie z 2001 r. W dokumencie tym kompleksowo omówiono zasady projektowania i wykonania izolacji wodochronnych (zarówno przeciwwilgociowych, jak i przeciwwodnych) z mas KMB, zdefiniowano podstawowe wymagania stawiane podłożu, pokazano sposoby uszczelnienia tzw. trudnych i krytycznych miejsc oraz przedstawiono sposoby kontroli prac hydroizolacyjnych na budowie. W instrukcji zdefiniowano także minimalne wymagania stawiane masom KMB. Warto zauważyć, że dokument ten jednoznacznie odwołuje się do wytycznych i norm dotyczących innych zastosowań mas KMB oraz do wytycznych związanych z zastosowaniem innych materiałów wodochronnych. Oczywiście są to dokumenty niemieckie, niemające u nas mocy prawnej, reprezentują one jednak aktualny stan wiedzy technicznej w danym zakresie i wobec braku jakichkolwiek innych polskich norm i wytycznych dotyczących tego typu materiałów i tego zakresu robót są jak najbardziej godne uwagi.
Wybór rozwiązania w zależności od obciążenia wilgocią/wodą
Wytyczne „Richtlinie für die Planung…” [1], bazując na normie DIN 18195 [2], wyróżniają dla fundamentów dwa przypadki obciążenia wilgocią/wodą.
Pierwszy to obciążenie wilgocią zawartą w gruncie – przypadek najkorzystniejszy, który wymaga najprostszego typu uszczelnienia, uniemożliwiajacego kapilarne wnikanie wilgoci do ściany. Warunkiem jego występowania jest możliwość wsiąknięcia wody opadowej wystarczająco głęboko w grunt poniżej poziomu posadowienia budynku (wykluczone jest oczywiście występowanie wysokiego poziomu wód gruntowych). Zalegający dookoła budynku grunt musi być niespoisty i dobrze przepuszczalny (np. piasek, żwir). Wystarczy w takiej sytuacji wykonać jedynie izolację przeciwwilgociową (odpowiada to tzw. izolacji typu lekkiego). Możliwa jest sytuacja, gdy w poziomie posadowienia zalegają grunty spoiste (np. glina, margiel czy ił), uniemożliwiające szybkie wsiąkanie wilgoci. Powoduje to czasowe oddziaływanie spiętrzającej się wody opadowej na ścianę fundamentową. Jeżeli dodatkowo zostanie wykonany skuteczny drenaż, możliwe jest wykonanie izolacji przeciwwilgociowej. W przeciwnym razie należy zaprojektować izolację przeciwwodną ze względu na hydrostatyczne parcie wody (to, że występuje ono czasowo, nie ma znaczenia). Analogicznie trzeba traktować długotrwałe oddziaływanie na fundamenty wody pod ciśnieniem. Sytuacja ta ma miejsce przy wysokim (powyżej poziomu posadowienia) poziomie wód gruntowych. Przy wykonywaniu tego typu uszczelnień stawia się bardzo wysokie wymagania wobec materiałów oraz sposobu wykonania robót, uszczelnienie to bowiem pracuje w najcięższych warunkach.
Punktem odniesienia do określenia omówionych przypadków jest tzw. współczynnik wodoprzepuszczalności gruntu – k. Pokazane są one schematycznie na rys. 1–4 i oznaczają one odpowiednio:
- przypadek obciążenia wilgocią (rys. 1),
- przypadek obciążenia niezalegającą wodą opadową (rys. 2),
- obciążenie zalegającą (wzbierającą) wodą opadową (rys. 3),
- przypadek posadowienia budynku poniżej maksymalnego poziomu wody gruntowej (czyli występowanie stałego naporu wody) (rys. 4).
Warto zauważyć, że dla ostatniego przypadku wartość współczynnika k nie została określona.
Zastosowanie mas KMB nie musi się ograniczać do klasycznych izolacji fundamentów. Produkty te mogą być stosowane także do uszczelnień międzywarstwowych na balkonach, w pomieszczeniach mokrych oraz do uszczelnień dachów zielonych i dachów garaży podziemnych. Przy czym takie obciążenie traktowane jest jako obciążenie wodą bezciśnieniową (w przypadku fundamentów taki wariant nie istnieje). Dotyczy to izolacji międzywarstwowej np. balkonów, pomieszczeń mokrych w budownictwie mieszkaniowym oraz tarasów, intensywnie obciążonych pomieszczeń mokrych (np. kuchni w zakładach zbiorowego żywienia), plaż basenowych, natrysków itp.
Potrzebny jest tu jednak komentarz. Takie zastosowanie mas KMB dotyczy jedynie izolacji międzywarstwowej, co oznacza, że niedopuszczalne jest pominięcie dla tych przypadków izolacji podpłytkowej. W tekście wytycznych „Richtlinie für die Planung…” [1] wymienionych jest kilkanaście dokumentów związanych z omawianą instrukcją. Oznacza to, że nie wolno jej rozpatrywać osobno.
Drugie zastosowanie niezwiązane z fundamentami dotyczy zastosowania mas KMB jako hydroizolacji dachów zielonych i balastowych oraz dachów parkingów podziemnych. Norma DIN 18195 [2] wprowadza tu pewne ograniczenia: dla dachów zielonych (także z zazielenieniem intensywnym) maksymalne spiętrzenie wody nie może przekraczać 100 mm. Należy jednakże zwrócić uwagę na dwie rzeczy.
Po pierwsze, wiążące są zalecenia producenta stosowanego materiału. Nie każdy materiał może być stosowany w takim miejscu. Chodzi tu także o odporność chemiczną na kwasy humusowe i inne związki znajdujące się w warstwie wegetacyjnej dachu zielonego lub w gruncie. Producenci mas KMB chętnie posługują się normą DIN 4030 [3]. Rozróżnia ona trzy stopnie agresywności wody (słabo agresywny, silnie agresywny i bardzo silnie agresywny) oraz dwa stopnie agresywności gruntu (słabo agresywny i silnie agresywny). W zasadzie masy KMB są odporne na silnie agresywną wodę (4,5 ≤ pH < 5,5; 30 ≤ NH4+ < 60, 1000 ≤ Mg2+ < 3000, 600 ≤ SO42– < 3000), choć nie musi to dotyczyć każdego materiału. Daje to pojęcie o odporności chemicznej tego typu materiałów i tłumaczy ograniczenia narzucane przez producenta.
Po drugie, taka klasyfikacja powoduje, że w myśl omawianych wytycznych wykonuje się tu izolację przeciwwilgociową, co w polskich realiach może być dość ryzykowne.
Przykład bezmyślnego zastosowania materiału pokazano na fot. 1–2. Jest to podziemny zbiornik na wodę wykonany bez izolacji od strony gruntu. Wnętrze zbiornika po opróżnieniu (widok ściany) pokazano na fot. 1, fot. 2 ilustruje widok ściany w zbliżeniu.
Materiały uzupełniające
Dobra przyczepność do podłoża to jeden z podstawowych wymogów skuteczności hydroizolacji. Stąd w systemie znajdują się specjalne preparaty gruntujące do podłoża. Ujednolicają one jego chłonność, wiążą kurz na powierzchni, a w niektórych sytuacjach mogą wpływać na zwiększenie stabilności podłoża (wzmacniają jego powierzchnię).
Jako gruntowniki mogą być stosowane:
- emulsje/roztwory bitumiczne,
- żywice reaktywne,
- dyspersje tworzyw sztucznych (polimerów),
- preparaty na bazie silikatów (krzemiany),
- rozpuszczalnikowe emulsje/roztwory bitumiczne (z ograniczeniami – tylko przy pracach naprawczych na zewnątrz).
Składnikiem systemu są także mineralne szlamy uszczelniające, stosowane jako tzw. wstępne uszczelnienie powierzchni, jako uszczelnienie ław fundamentowych i strefy cokołowej.
Należy zwrócić uwagę, że autorzy wspomnianych wytycznych mówią wyraźnie o systemie. Wymusza to taki układ materiałów (i kolejność wykonywania robót), aby możliwe było ich szczelne połączenie. Dobór materiałów nie może być zatem przypadkowy. Przez wstępne uszczelnienie podłoża należy tu rozumieć sytuację, gdy masa bitumiczna byłaby odrywana od podłoża (np. na skutek braku warstwy dociskowej). Żaden materiał bitumiczny nie może pracować na odrywanie od podłoża – wymagane jest albo wstępne uszczelnienie podłoża szlamem, albo wykonanie odpowiedniej warstwy dociskowej. Drugi przypadek wymuszający wykonanie wstępnego uszczelnienia podłoża to jego zbyt duża wilgotność. Jest to szczególnie istotne przy pracach renowacyjnych. Nakładanie masy KMB (nawet dwuskładnikowej) na mokre podłoże jest niedopuszczalne. Wykonuje się wtedy tzw. wstępne uszczelnienie za pomocą szlamu. Można tu stosować zarówno szlamy sztywne, jak i elastyczne (zależy to od miejsca wykonywanych prac).
Wymagania dotyczące mas KMB
Wymagania stawiane masom KMB podano w normie DIN 18195 [2] (tabela).
Bardzo istotnym parametrem jest odporność masy na obciążenia (tzw. obciążalność mechaniczna). Jest ona określana zmniejszeniem grubości warstwy hydroizolacji przy obciążeniu mechanicznym. Dla izolacji przeciwwodnej przy obciążeniu mechanicznym 0,3 MPa zmniejszenie grubości powłoki hydroizolacyjnej nie może być większe niż 50%. Dostępne na rynku materiały mogą w tym punkcie różnić się właściwościami, i to niekiedy dość znacznie, dlatego ich zastosowanie może być różne.
Przed podjęciem decyzji o zastosowaniu konkretnego materiału warto zwrócić uwagę na jeszcze jeden parametr. Jest to tzw. zawartość części stałych, mówiąca o tym, o ile zmniejszy się grubość powłoki po wyschnięciu (zawartość części stałych wynosząca 90% oznacza, że po wyschnięciu grubość hydroizolacji będzie wynosić 90% grubości nałożonej świeżej masy). Według poprzedniej instrukcji z 2001 r. minimalna zawartość części stałych w gotowej do nałożenia masie nie mogła być mniejsza niż 50%. Dostępne na rynku masy KMB mogą się pod tym względem znacznie różnić, co skutkuje znacznym zróżnicowaniem zużycia potrzebnego do uzyskania wyschniętej warstwy o żądanej grubości. Może się w efekcie okazać, że 1 m² powłoki hydroizolacyjnej wykonanej z dobrej jakościowo, droższej (za 1 kg lub dm³ produktu) masy KMB o wysokiej zawartości części stałych będzie tańszy niż to samo uszczelnienie wykonane z pozornie taniej masy o niskiej zawartości części stałych (w wysokiej jakości masach KMB zawartość części stałych wynosi 90–95%).
Jeżeli chodzi o pozostałe parametry, masy KMB są pod wieloma względami podobne. Cechy, takie jak zdolność mostkowania rys, odporność na ujemne temperatury, szczelność, spełniają wymagania normy.
Literatura
- „Richtlinie für die Planung und Ausführung von Abdichtung mit kunststoffmodifizierten Bitumendickbeschichtungen (KMB) – erdberührte Bauteile”, Deutsche Bauchemie e.V., 2010.
- DIN 18195, „Bauwerksabdichtung”, VIII 2000.
- DIN 4030, Teil 1: „Beurteilung betonangreifender Wasser, Boden und Gase. Grundlagen und Grenzwerte”, VI 1991.
- „Richtlinie für die Planung und Ausführung von Abdichtung erdberührter Bauteile mit flexiblen Dichtungsschlämmen”, Deutsche Bauchemie e.V., 2006.
- „Richtlinie für die Planung und Ausführung von Abdichtung erdberührter Bauteile mit flexiblen Dichtungsschlämmen”, Deutsche Bauchemie e.V., 2006.
- WTA Merkblatt 4-6-05, „Nachträgliches Abdichten erdberührter Bauteile”.
- „Richtlinie für die fachgerechte Planung und Ausführung des Fassadensockelputzes sowie des Anschlusses der Außenanlagen”, I 2002.
- M. Rokiel, „Poradnik. Hydroizolacje w budownictwie. Wybrane zagadnienia w praktyce”, wyd. II, Dom Wydawniczy MEDIUM, Warszawa 2009.