Wpływ mostków cieplnych w balkonach na izolacyjność budynku
Influence of thermal bridges in balconies on building insulation
Poznaj wpływ mostków cieplnych w balkonach na izolacyjność budynku, fot. www.pixabay.com
Jedną z dróg ucieczki energii cieplnej z budynku, często niedocenianą, są mostki termiczne tworzące się w balkonach. A ich wyeliminowanie stanowi dla architektów i konstruktorów duże wyzwanie, bo konieczne jest bardzo precyzyjne i prawidłowe zaprojektowanie połączenia balkonu ze stropem oraz przemyślany dobór najlepszych rozwiązań dla danego obiektu.
Zobacz także
Alchimica Polska Sp. z o.o. Hydroizolacja tarasu i balkonu w systemie Hyperdesmo
Zarówno balkon, jak i taras cały czas są narażone na działanie destrukcyjnych czynników atmosferycznych. Dlatego też zastosowane podczas ich budowy materiały przede wszystkim muszą stanowić skuteczną ochronę...
Zarówno balkon, jak i taras cały czas są narażone na działanie destrukcyjnych czynników atmosferycznych. Dlatego też zastosowane podczas ich budowy materiały przede wszystkim muszą stanowić skuteczną ochronę przed wodą, wilgocią i zmianami temperatury. I to niezależnie od wielkości tych przydomowych powierzchni.
Canada Rubber Polska Szczelnie, estetycznie i na lata?
Dlaczego warto zająć się hydroizolacją tarasu? Jaki produkt idealnie sprawdzi się na tarasach? Poniżej prezentujemy trzy systemy z użyciem żywicy poliuretanowej – DROOF 250, które idealnie sprawdzą się...
Dlaczego warto zająć się hydroizolacją tarasu? Jaki produkt idealnie sprawdzi się na tarasach? Poniżej prezentujemy trzy systemy z użyciem żywicy poliuretanowej – DROOF 250, które idealnie sprawdzą się w hydroizolacji tarasu.
Prokostal Ładziński Sp. z o.o. Twój balkon na świat
Wychodząc naprzeciw oczekiwaniom mieszkańców budynków wielolokalowych, dotyczącym poprawy komfortu życia oraz podniesienia standardu zamieszkiwania i większej swobody przestrzennej, stworzyliśmy możliwość...
Wychodząc naprzeciw oczekiwaniom mieszkańców budynków wielolokalowych, dotyczącym poprawy komfortu życia oraz podniesienia standardu zamieszkiwania i większej swobody przestrzennej, stworzyliśmy możliwość rozbudowy lub dobudowy balkonu do budynków wyposażonych w tzw. portfenetry (tzw. drzwi balkonowe z balustradą) oraz loggie przez powiększenie balkonu.
O czym przeczytasz w artykule? |
Abstrakt |
---|---|
|
Jedną z dróg ucieczki energii cieplnej z budynku, często niedocenianą, są mostki termiczne tworzące się w balkonach. W artykule autor uzasadnia, że aby budować zgodnie z WT 2021, należy eliminować ryzyko powstawania mostków termicznych poprzez stosowanie rozwiązań, które już dziś cechują nowoczesne budownictwo. W tekście przytoczone są przepisy prawne oraz przykłady obliczeniowe. Influence of thermal bridges in balconies on building insulationOne of the ways of escaping thermal energy from the building, often underestimated, are thermal bridges formed in balconies. In the article, the Author justifies that in order to build in accordance with WT 2021, the risk of thermal bridges should be eliminated by using solutions that already characterize modern construction. The text mentions legal provisions and calculation examples. |
Mostki cieplne a oszczędność energii
Oszczędność energii to jedno z podstawowych wymagań dobrego projektowania budynków. Również przepisy budowlane są pod tym względem coraz ostrzejsze.
W rozporządzeniu Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [1], w dziale X „Oszczędność energii i izolacyjność cieplna” określono m.in. wymagania minimalne, które musi spełnić obiekt budowlany. Zgodnie z nimi, wskaźnik rocznego zapotrzebowania na nieodnawialną energię pierwotną EP [kWh/(m2·rok)] musi być mniejszy lub równy wartości maksymalnej określonej w § 329 p. 2. (np. dla budynków mieszkalnych wielorodzinnych maksymalna wartość EP wynosi 85 kWh/(m2·rok). Natomiast maksymalną wartość wskaźnika rocznego zapotrzebowania na nieodnawialną energię pierwotną EP oblicza się według przepisów (§ 328, 329 WT), wydanych na podstawie art. 15 ustawy z dnia 29 sierpnia 2014 r. o charakterystyce energetycznej budynków (DzU poz. 1200 oraz z 2015 r. poz. 151).
Z kolei współczynnik przenoszenia ciepła ze strefy ogrzewanej (i) bezpośrednio do środowiska zewnętrznego (e) HT,ie [W/K] wyznacza się według PN-EN 12831:2006 „Instalacje ogrzewcze w budynkach – Metoda obliczania projektowego obciążenia cieplnego” [2]. Obliczenie tego współczynnika wymaga uwzględnienia wpływu mostków cieplnych. Tu norma wskazuje dwie drogi uzyskiwania informacji o wielkości mostka (współczynnik Ψ):
- obliczenia bazujące na wartościach przybliżonych w oparciu o normę PN-EN ISO 14683 [3],
- obliczenia dokładne w oparciu o normę PN-EN ISO 10211 [4].
Dokładne obliczenia, wymagające sporo nakładu pracy oraz odpowiedniego oprogramowania, są, niestety, rzadkością. Większość projektantów korzysta bowiem z przybliżonych wartości współczynnika Ψe zawartych w tabeli A. 2 normy PN-EN ISO 14683 [3]. Oprogramowania wspomagające obliczanie obciążenia cieplnego oraz charakterystyki energetycznej budynku również odwołują się do tablicy A. 2 tej normy. W efekcie wprowadza się do obliczeń często kilkukrotnie zawyżone wartości współczynnika Ψe, co powoduje, że udział mostków cieplnych w ubytkach ciepła przenikającego przez przegrodę zewnętrzną może wynosić kilkanaście, a niekiedy nawet ponad 20% całkowitych jego strat. Dane te potwierdza również analiza Krajowej Agencji Poszanowania Energii pt. „Raport na temat efektywności energetycznej budynków” [5]. W opracowaniu tym określono przedziały średnich strat ciepła przez elementy przegrody zewnętrznej oraz systemy wentylacji w budynkach jednorodzinnych i wielorodzinnych.
Według raportu [5] w budynkach wielorodzinnych mostki cieplne generowały 15–18% całkowitych strat ciepła, a wartości te są porównywalne ze stratami ciepła przez ściany zewnętrzne (7–20%) oraz okna i drzwi (15–26%). Analiza udziału poszczególnych rodzajów mostków cieplnych wykazała, że dominowały mostki na połączeniach ścian zewnętrznych z oknami (udział 25–40%), balkonów ze stropem (udział 10–40%) oraz mostki na połączeniu ściany zewnętrznej z dachem (attyki) (udział 5–25%). Z danych tych wynika, że eliminowanie mostków cieplnych w budynku jest kluczowe w projektowaniu budynków rzeczywiście energooszczędnych.
Bardzo duży udział mostków cieplnych w stratach ciepła przez przegrodę zewnętrzną ma oczywiście swoje przyczyny, a są to:
- błędnie zaprojektowany detal (okna, balkony, attyki itp.),
- brak wymagań w przepisach budowlanych (Warunki Techniczne) dla mostków cieplnych,
- niewłaściwe oszacowanie wielkości mostka cieplnego.
Punkt 3., czyli problem niewłaściwego oszacowania wielkości mostka cieplnego, wymaga komentarza. Norma PN-EN ISO 14683 [3] dla balkonów podaje cztery możliwe sytuacje (B1, B2, B3, B4), a w każdej z nich płyta balkonu przebija ścianę zewnętrzną bez jakiegokolwiek zabezpieczenia (np. łącznikiem termoizolacyjnym). W efekcie wielkość mostka cieplnego w tym miejscu jest bardzo duża [Ψe = 0,70–0,95 W/(m·K)]. Po zastosowaniu łączników termoizolacyjnych wartość tego współczynnika Ψe wynosi poniżej 0,20 W/(m·K). Podobnie jest w wypadku narożnika ściany zewnętrznej, stropodachu i ścianki attykowej/pionowej balustrady. Tu są trzy schematy ze ścianką attykową (ścianka z materiału o wysokim współczynniku λ) (R5, R6, R7), ale żaden nie uwzględnia rozwiązań, które są w praktyce stosowane. W rezultacie projektant, który do oceny i obliczeń przyjmuje wartości z normy Ψe = 0,50–0,65 W/(m·K) otrzymuje wynik zupełnie nieodzwierciedlający rzeczywistej sytuacji. W nieodległej przyszłości przepisy dotyczące oszczędności energii jeszcze bardziej zostaną zaostrzone i aby im sprostać dokładne obliczenie wpływów mostków cieplnych stanie się koniecznością.
Przykład obliczeniowy – powtarzalny moduł zewnętrznej przegrody budynku z płytą balkonu
Pokazuje on, jak dużo energii można zaoszczędzić dzięki prawidłowemu zaprojektowaniu połączenia balkonu ze stropem. Przedmiotem zaś analizy (RYS. 1) jest powtarzalny moduł zewnętrznej ściany budynku wielorodzinnego (8,5×3,0 m), która składa się:
- ze ściany wykonanej w systemie EPS o współczynniku U = 0,193 W/(m2·K),
- okien (1,5×1,5 m – 2 szt., 1,5×1,2 m – 1 szt.) i drzwi balkonowych (2,3×0,9 m – 1 szt.) o współczynniku U = 0,90 W/(m2·K),
- balkonu o współczynniku Ψe [W/(m·K)] zmiennym w zależności od sposobu połączenia płyty balkonu ze stropem oraz zmiennej długości łączącej balkon ze stropem: l = 2, 3, 4 i 5 m.
Dla balkonów przyjęto następujące warianty połączenia (RYS. 2):
1) za pomocą łącznika termoizolacyjnego gr. d = 12 cm, o współczynniku λeq = 0,10 W/(m·K), oporze cieplnym Req = 1,2 m2·K/W
– wyliczony współczynnik Ψe = 0,103 W/(m·K),
2) za pomocą łącznika termoizolacyjnego gr. d = 8 cm, o współczynniku λeq = 0,10 W/(m·K), oporze cieplnym Req = 0,8 m2·K/W
– wyliczony współczynnik Ψe = 0,164 W/(m·K),
3) za pomocą łącznika termoizolacyjnego gr. d = 12 cm, o współczynniku λeq = 0,30 W/(m·K), oporze cieplnym Req = 0,4 m2·K/W
– wyliczony współczynnik Ψe = 0,297 W/(m·K),
4) płyta balkonu zaizolowana od góry i od dołu styropianem (λ = 0,035) gr. 5 cm – wyliczony współczynnik Ψe = 0,415 W/(m·K),
5) płyta balkonu bez jakiejkolwiek izolacji monolitycznie połączona ze stropem – wyliczony współczynnik Ψe = 0,855 W/(m·K),
6) płyta balkonu – według schematu B1 (załącznik A normy PN EN 14683 – Wartości orientacyjne liniowego współczynnika przenikania ciepła) – współczynnik Ψe = 0,95 W/(m·K).
Liniowy współczynnik przenikania ciepła Ψe [W/m·K] dla wariantów 1–5 obliczono za pomocą programu AnTherm.
Dla zobrazowania wpływu mostków w balkonach przyjęto, że wartość współczynnika Ψe = 0 W/(m·K) w połączeniach okien i drzwi balkonowych ze ścianą (montaż w grubości izolacji).
Mostki cieplne a ryzyko powstania grzybów pleśniowych
Kolejnym zagadnieniem związanym z mostkami cieplnymi jest możliwość tworzenia się grzybów pleśniowych na porowatych powierzchniach przegród. Tu również znajdziemy w przepisach budowlanych (WT – Dział VIII – Higiena i zdrowie § 321 p.1) wymagania w tym zakresie. Chodzi konkretnie o współczynnik temperaturowy ƒRsi. Jest to parametr określający „jakość złącza”. Jego wartość określa zależność temperatury na powierzchni przegrody θsi od temperatury na zewnątrz θe i wewnątrz pomieszczenia θi.
Dokumentem określającym procedurę obliczania minimalnej wartości tego współczynnika jest norma PN-EN ISO 13788 [6], przywołana w Warunkach Technicznych. Mimo że wymagania w WT jako wartość minimalną współczynnika ƒRsi dopuszczają 0,72, warto wiedzieć, że tak niska wartość tego współczynnika nie gwarantuje, że proces tworzenia się grzybów pleśniowych nie nastąpi. Bardziej miarodajna jest metoda określenia tego współczynnika, podana w PN-EN ISO 13788 [6], gdzie wartość ƒRsi zależy od lokalizacji obiektu (pod uwagę brana jest m.in. średniomiesięczna temperatura i wilgotność w danej miejscowości), rodzaju obiektu i związana z tym klasa wilgotności wewnętrznej. Zgodnie z zaleceniami normowymi, zakłada się, że ryzyko rozwoju pleśni występuje wtedy, gdy wilgotność na powierzchni wewnętrznej złącza osiągnie 80%. Według tego kryterium np. dla temperatury w pomieszczeniu θi = 20°C i wilgotności względnej φ = 50% minimalna dopuszczalna temperatura na powierzchni przegrody to θsi = 12,6°C, a gdy w pomieszczeniu wystąpi podwyższona wilgotność, np. φ = 60% (kuchnia, łazienka), temperatura stanowiąca granicę bezpiecznej strefy to już θsi = 15,5°C (RYS. 3).
RYS. 3. Wykres pokazujący zależność temperatury na powierzchni przegrody od wilgotności w pomieszczeniu i ryzyka tworzenia się grzybów pleśniowych; rys. I. Stachura na podstawie PN-EN 13788 [6]
Warto o tym pamiętać przy projektowaniu detali zewnętrznych, w których mostki cieplne powstają wskutek geometrii złącza (np. narożnik zewnętrzny) i rozwiązań materiałowych w tym złączu (materiałowy mostek cieplny). Przykładami takich miejsc są np. balkony w narożu budynku, tarasy z pionową balustradą (np. żelbetową).
Przykład obliczeniowy – balkon w narożu budynku
Porównajmy balkon narożny z łącznikami balkonowymi o różnych wartościach współczynnika λeq i Req (RYS. 4–5, RYS. 6-7 i RYS. 8-9) oraz balkon izolowany styropianem lub styrodurem od góry i od dołu gr. 5 cm (RYS. 10–11).
Przy temperaturze zewnętrznej θe = –20°C i wewnętrznej θi = 20°C zastosowano:
1) łącznik termoizolacyjny gr. d = 12 cm, o współczynniku λeq = 0,10 W/(m·K), oporze cieplnym Req = 1,2 m2·K/W – wyliczona temperatura w narożu θsi = 14,9°C (RYS. 4–5),
2) łącznik termoizolacyjny gr. d = 8 cm, o współczynniku λeq = 0,10 W/(m·K), oporze cieplnym Req = 0,8 m2·K/W – wyliczona temperatura w narożu θsi = 14,1°C (RYS. 6-7),
3) łącznik termoizolacyjny gr. d = 12 cm, o współczynniku λeq = 0,30 W/(m·K), oporze cieplnym Req = 0,4 m2·K/W – wyliczona temperatura w narożu θsi = 12,4°C (RYS. 8-9),
4) rozwiązanie bez łącznika termoizolacyjnego, balkon izolowany do góry i od dołu, gr. izolacji 5 cm o współczynniku λeq = 0,035 W/(m·K) – wyliczona temperatura w narożu θsi = 10,1°C (RYS. 10–11).
RYS. 4–5. Balkon narożny z łącznikiem termoizolacyjnym gr. 12 cm o współczynniku λeq = 0,10 W/(m·K) i oporze cieplnym Req = 0,4 m2·K/W; rys.: I. Stachura
RYS. 6–7. Balkon narożny z łącznikiem termoizolacyjnym gr. 8 cm o współczynniku λeq = 0,10 W/(m·K) i oporze cieplnym Req = 0,6 m2·K/W; rys. I. Stachura
RYS. 8–9. Balkon narożny z łącznikiem termoizolacyjnym gr. 12 cm o współczynniku λeq = 0,30 W/(m·K) i oporze cieplnym Req = 0,4 m2·K/W; rys.: I. Stachura
RYS. 10–11. Balkon narożny bez łącznika termoizolacyjnego, izolowany do góry i od dołu, gr. izolacji 5 cm o współczynniku λeq = 0,035 W/(m·K); rys.: I. Stachura
Podsumowanie
1. Wprowadzenie w Warunkach Technicznych [1] wymagań ograniczających wpływ mostka cieplnego Ψe [W/m·K] wydaje się jak najbardziej zasadne – podobnie jak współczynników U (m.in. dla ścian i okien). Dopiero wtedy będzie możliwe energooszczędne podejście do projektowania.
2. Wyniki analizy pokazują, że o wielkości dodatkowych strat ciepła przez przegrodę zewnętrzną budynku (liniowy współczynnik przenikania ciepła Ψe [W/m·K]) decydują w równym stopniu grubość łącznika oraz jego ekwiwalentny współczynnik przenikania ciepła λeq [W/(m·K)]. Sama, nawet duża, grubość łącznika będzie niewystarczająca, jeśli parametry izolacyjne łącznika będą niskie (najlepiej dowodzi tego przykład wariantu 3 – zastąpienie łącznika gr. 12 cm łącznikiem gr. 8 cm, ale o trzykrotnie większej izolacyjności λeq daje zdecydowanie lepszy efekt). A najbardziej optymalnym rozwiązaniem jest połączenie tych dwóch wartości, bo pozwala na uzyskanie maksymalnie dużej wartości ekwiwalentnego oporu cieplnego łącznika Req [m2·K/W].
3. Źle zaprojektowane balkony w budynkach wielorodzinnych mogą być źródłem dużych, dodatkowych strat ciepła (określane współczynnikiem strat ciepła przez przenikanie Ht,ie). Może to być nawet kilkanaście procent dodatkowych strat (RYS. 12), jeśli balkony stanowią płytę połączoną monolitycznie ze stropem z izolacją od góry i od dołu.
RYS. 12. Wykres pokazujący wpływ połączenia balkonu ze stropem (długość, wartość współczynnika Ψ) na wzrost straty ciepła przez przegrodę zewnętrzną budynku; rys.: I. Stachura
4. Straty ciepła zminimalizują łączniki termoizolacyjne (wzrost strat ciepła o kilka procent w stosunku do przegrody bez balkonu), które zapewniają uzyskanie wartości współczynnika Ψe < 0,20 W/(m·K).
5. Korzystanie w obliczeniach cieplnych z wartości orientacyjnych liniowego współczynnika przenikania ciepła Ψe (norma PN EN 14683 [3]) prowadzi do nierzeczywistych wyników (w długich balkonach przyrost dodatkowych strat ciepła może wynosić nawet ponad 40% – RYS. 12). Tabele z wartościami orientacyjnymi dla współczynnika Ψe w wymienionej normie są często, niestety, jedynym źródłem wiedzy projektanta, wykonującego obliczenia cieplne. Zasadna byłaby więc aktualizacja normy PN EN 14683 [3], polegająca na uzupełnieniu tabel o rozwiązania obecnie stosowanie w procesie projektowania (m.in. o łączniki termoizolacyjne), wzorowana na normie DIN 4108 Beiblatt 2-2019.
6. Oczekiwaną jakość połączenia balkonu i stropu może zapewnić opisanie minimalnych wymagań dotyczących izolacyjności łączników (d, λeq, Req) i wymagań dla liniowego współczynnika przenikania ciepła Ψe w projekcie, podobnie jak dla ścian, okien, stropodachu (współczynnik przenikania ciepła U).
7. Dobrej jakości łącznik (o niskim współczynniku λeq i wysokiej wartości oporu Req) daje gwarancję uzyskania bezpiecznej temperatury na wewnętrznej powierzchni przegrody. Przykład z łącznikiem o słabych parametrach izolacyjnych (RYS. 8–9) pokazuje, że w takim złączu ryzyko pojawienia się zagrzybienia jest duże.
8. Obustronne izolowanie płyty balkonu zaprojektowanego w narożniku zewnętrznym budynku jest całkowicie nieskuteczne (RYS. 10–11). W tym rozwiązaniu bowiem temperatura na powierzchni wewnętrznej stwarza bardzo sprzyjające warunki do rozwoju pleśni.
9. Wymagania wilgotnościowe w WT dotyczące minimalnej wartości współczynnika ƒRsi są niewystarczające, ponieważ nawet spełnienie tych wymagań (ƒRsi > 0,72) w wielu sytuacjach może nie wyeliminować ryzyka tworzenia się grzybów pleśniowych. Dopiero złącze, dla którego wartość współczynnika ƒRsi przekracza 0,8, można uznać za bezpieczne.
Literatura
- Rozporządzenie Ministra Infrastruktury z 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU nr 75, poz. 690 z późn. zm.)
- PN-EN 12831:2006, „Instalacje ogrzewcze w budynkach – Metoda obliczania projektowego obciążenia cieplnego”.
- PN-EN ISO 14683:2008, „Mostki cieplne w budynkach – Liniowy współczynnik przenikania ciepła – Metody uproszczone i wartości orientacyjne”.
- PN-EN ISO 10211:2008, „Mostki cieplne w budynkach – Strumienie ciepła i temperatury powierzchni – Obliczenia szczegółowe”.
- „Raport na temat efektywności energetyczne budynków”, KAPE, Warszawa 2013.
- PN-EN ISO 13788:2013-05, „Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku – Temperatura powierzchni wewnętrznej konieczna do uniknięcia krytycznej wilgotności powierzchni i kondensacji międzywarstwowej – Metody obliczania”.