Materiały naprawcze do betonu stosowane w obiektach inżynierskich
Materiały naprawcze | Badania starzeniowe | Badania IBDiM
Stosowanie w naprawach konstrukcji inżynierskich produktów nieodpornych na wielokrotne, cykliczne zmiany temperatury jest często główną przyczyną niepowodzenia wykonywanych robót. Dotyczy to zwłaszcza materiałów naprawczych do betonu.
Zobacz także
BASCOGLASS Sp. z o. o. Pręty kompozytowe do zbrojenia betonu
Pręty kompozytowe wykorzystywane są w konstrukcjach budowlanych od kilkudziesięciu lat. Wysoka odporność na korozję, duża wytrzymałość na rozciąganie, obojętność elektromagnetyczna oraz łatwość cięcia...
Pręty kompozytowe wykorzystywane są w konstrukcjach budowlanych od kilkudziesięciu lat. Wysoka odporność na korozję, duża wytrzymałość na rozciąganie, obojętność elektromagnetyczna oraz łatwość cięcia to główne czynniki decydujące o wyborze prętów kompozytowych jako zbrojenia konstrukcji. Liczne realizacje, w których zastosowano takie zbrojenie oraz pozytywne wyniki wielu badań świadczą o tym, iż jest ono dobrą alternatywą dla klasycznej stali zbrojeniowej.
Saint Gobain Construction Products Polska/ Weber Jaką farbę elewacyjną wybrać - właściwości i zastosowanie
Chcesz odświeżyć dom na wiosnę? Nic prostszego, wystarczy odmalować elewację, a budynek będzie jak nowy. Jakich farb fasadowych użyć, jak przygotować powierzchnię pod malowanie i jakie efekty można uzyskać...
Chcesz odświeżyć dom na wiosnę? Nic prostszego, wystarczy odmalować elewację, a budynek będzie jak nowy. Jakich farb fasadowych użyć, jak przygotować powierzchnię pod malowanie i jakie efekty można uzyskać na elewacji - o tym wszystkim mówią eksperci Weber we wiosennym przewodniku po farbach elewacyjnych.
dr inż. Marcin Górski, dr inż. Bernard Kotala, mgr inż. Rafał Białozor Przykłady zastosowania prętów FRP oraz deskowań traconych
Pręty kompozytowe stwarzają wiele możliwości zastosowania w konstrukcjach budowlanych wszędzie tam, gdzie tradycyjne zbrojenie stalowe przestaje być efektywne. Wśród nich największą popularnością w realizacjach...
Pręty kompozytowe stwarzają wiele możliwości zastosowania w konstrukcjach budowlanych wszędzie tam, gdzie tradycyjne zbrojenie stalowe przestaje być efektywne. Wśród nich największą popularnością w realizacjach budowlanych cieszą się pręty kompozytowe oparte na włóknie szklanym. Ciekawą propozycją wykorzystania materiałów FRP jest ich zastosowanie w budownictwie betonowym jako deskowanie tracone. Nie jest to metoda powszechna i znajduje uznanie głównie w Stanach Zjednoczonych.
ABSTRAKT |
---|
W artykule omówiono wymagania dotyczące wyrobów do napraw konstrukcyjnych i niekonstrukcyjnych według normy PN-EN 1504-3:2006. Porównano i omówiono metody badań starzeniowych. Przedstawiono także ocenę przydatności zapraw naprawczych do betonu opartą na badaniach mrozoodporności zapraw oraz na przyczepności do podłoża, doraźnej i zmierzonej po 200 cyklach zamrażania i odmrażania. |
The article discusses the requirements for products used in structural and non-structural repairs in accordance with PN‑EN 1504‑3:2006. Methods of aging tests are compared and discussed. The paper also presents an assessment of the usefulness of concrete repair mortars based on frost resistance tests of mortars and their adhesion to the substrate, both immediate and measured after 200 cycles of freezing and defrosting. |
Z punktu widzenia użytkownika podstawowym czynnikiem w ocenie skuteczności wykonania naprawy konstrukcji inżynierskich jest trwałość wykonanych prac.
Należy przez to rozumieć zdolność naprawionej konstrukcji do zapewnienia właściwości użytkowych nie gorszych niż przed pracami, tak by zagwarantować bezawaryjność w przyjętym okresie użytkowania przy minimalizacji kosztów jej utrzymania.
Największy wpływ na trwałość naprawy ma odporność materiałów naprawczych na cykliczne zamrażanie i odmrażanie. Związane jest to bezpośrednio ze strefą klimatu przejściowego, a więc z dużą różnicą temperatury między latem a zimą (latem ponad 30°C, zimą często poniżej –20°C) oraz częstymi przejściami przez temperaturę 0°C. W Polsce w ciągu roku liczba cykli przejść przez 0°C, czyli cykli zamrażania i odmrażania, wynosi ok. 100.
Zimą woda znajdująca się w porach betonu zwiększa objętość podczas zamarzania i je rozsadza. Działa także na zaprawę wypełniającą ubytek w elemencie betonowym. Niszczy jej strukturę (spękania, ubytki) i skutkuje odspojeniem od podłoża (ścinaniem w warstwie stykowej z naprawianym betonem).
Klasyfikacja materiałów naprawczych
Na rynku polskim jest wiele rodzajów materiałów naprawczych, oferowanych przez różnych producentów. W klasyfikacjach tych wyrobów stosuje się różne kryteria, jak podstawowy zakres stosowania, rodzaj spoiwa, granulacja i grubość układanej warstwy czy konsystencja. Największą grupę stanowią zaprawy naprawcze.
Materiały do naprawy betonowych obiektów inżynierskich są najczęściej stosowane do:
- wypełniania ubytków w elementach nośnych (powstałych na skutek uszkodzeń mechanicznych oraz spowodowanych korozją);
- wykonywania warstw wyrównawczych na płytach pomostów obciążonych ruchem pieszych lub kołowym;
- wykonywania reprofilacji oraz wyrównywania (szpachlowania) powierzchni elementów nośnych z betonu;
- wymiany uszkodzonych elementów konstrukcyjnych.
W zależności od rodzaju zastosowanych spoiw można wyróżnić trzy grupy:
- zaprawy i betony hydrauliczne typu CC (ang. Cement Concrete) – powstające przez zmieszanie spoiwa hydraulicznego z frakcjonowanym kruszywem, mogące zawierać domieszki i dodatki; twardniejące po zmieszaniu z wodą w wyniku reakcji hydratacji;
- zaprawy i betony polimerowo-cementowe typu PCC (ang. Polymer Cement Concrete) – powstające przez zmieszanie spoiwa hydraulicznego modyfikowanego polimerami z frakcjonowanym kruszywem, mogące zawierać domieszki i dodatki, które po zmieszaniu z wodą albo płynem zarobowym twardnieją w wyniku reakcji hydratacji; polimery tworzą w utwardzonych zaprawach typu PCC sieć połączeń, w znaczący sposób wzmacniającą wytrzymałość zaprawy na rozciąganie oraz wpływającą na zmniejszenie jej współczynnika sprężystości liniowej w porównaniu z zaprawami typu hydraulicznego; najczęściej stosowanymi polimerami są:
– żywice akrylowe, metakrylowe lub modyfikowane akrylowe w postaci rozpuszczalnych proszków lub dyspersji wodnych;
– polimery, kopolimery i terpolimery winylowe w postaci rozpuszczalnych proszków lub dyspersji wodnych;
– kauczuk styrenowo-butadienowy, tylko w postaci dyspersji wodnych;
– naturalne lateksy kauczukowe;
– epoksydy; - zaprawy i betony polimerowe typu PC (ang. Polymer Concrete) – powstające przez zmieszanie mieszanki spoiw polimerowych i kruszywa, utwardzające się w reakcji polimeryzacji.
Można także wyodrębnić zaprawy:
- szpachlowe – przeznaczone do układania warstwami gr. od 0 mm do 5 mm;
- naprawcze – przeznaczone do układania warstwami gr. do 4 cm;
- szybkosprawne – charakteryzujące się bardzo szybkim przyrostem wytrzymałości, np. przeznaczone do tamowania przecieków w tunelach, osadzania pokryw włazów kanałowych;
- specjalne – przeznaczone do specjalnych zastosowań, np. do wykonywania podlewek pod łożyska, samozagęszczalne, montażowe.
Poza zaprawami naprawczymi, do grupy materiałów przeznaczonych do naprawy betonu należy zaliczyć wyroby do wykonywania warstw sczepnych oraz powłok antykorozyjnych na odsłoniętych elementach zbrojenia.
Pod względem konsystencji zaprawy dzieli się na:
- płynne (samorozlewne, do wylewania, samopoziomujące, do kotwienia, na podlewki) – przeznaczone dowylewania na równych powierzchniach, w otworach lub w deskowaniach, jako podlewki pod łożyska i maszyny itp.; nie wymagają zagęszczania po ułożeniu;
- zaprawy tiksotropowe – o konsystencji gęstoplastycznej, przeznaczone do nakładania przez narzucanie kielnią lub aparatami tynkarskimi; można je nakładać na powierzchnie poziome lub pionowe i sufitowe warstwami gr. od 2 cm do 4 cm.
Ponadto zgodnie z normą PN-EN 1504-3:2006 [1], w zależności od wymagań użytkowych, materiały naprawcze dzielą się na dwie grupy:
- do napraw niekonstrukcyjnych (materiały klasy R1 i R2);
- do napraw konstrukcyjnych (materiały klasy R3 i R4).
Głównym kryterium klasyfikującym do danej klasy jest wytrzymałość na ściskanie, która powinna wynosić co najmniej:
- 10 MPa w wypadku klasy R1,
- 25 MPa w wypadku klasy R3,
- 15 MPa w wypadku klasy R2,
- 45 MPa w wypadku klasy R4.
W wypadku konstrukcji inżynierskich, w tym w szczególności obiektów mostowych, wykonuje się prawie wyłącznie naprawy konstrukcyjne. W obiektach mostowych nie występują betonowe elementy osłonowe, działowe i podobne drugorzędne elementy.
Wszystkie elementy konstrukcyjne wykonane z betonu są albo elementami nośnymi (płyty pomostu, belki główne oraz podpory: filary, przyczółki, oczepy, słupy) albo elementami pomostu (np. chodniki, nawierzchnie betonowe).
Części te narażone są na przenoszenie dużych obciążeń oraz na działanie czynników atmosferycznych, takich jak zmiany temperatury, woda opadowa, zasolona woda pochodząca z topnienia śniegu, wielokrotne zamrażanie i odmrażanie, wiatr itp.
W związku z tym przy wykonywaniu napraw należy stosować materiały naprawcze klasy R3 lub R4.W wypadku mostów stosowanie zapraw klasy R1 i R2 powinno być ograniczone do naprawy obiektów historycznych wykonanych z betonu niezbrojonego, cegły lub kamienia.
Takie obiekty wznoszono z betonu lub zapraw niskich klas, o stosunkowo niskiej wytrzymałości na ściskanie i rozciąganie. Wbudowanie w takie konstrukcje nowych elementów wykonanych z zaprawy o znacznie wyższej wytrzymałości od podstawowego materiału konstrukcyjnego skutkuje odspojeniem.
Zniszczenie następuje w materiale starym tuż przy warstwie stykowej z nowo wbudowaną zaprawą naprawczą. Przyczyną są naprężenia wewnętrzne wywołane zmianami temperatury otoczenia i różną odkształcalnością termiczną łączonych materiałów.
Właściwości techniczno-użytkowe materiałów naprawczych
Pojawienie się norm serii PN-EN 1504 „Wyroby i systemy do ochrony i napraw konstrukcji betonowych” (w tym arkusza PN-EN 1504‑3:2006 [1]) miało uporządkować i ujednolicić wymagania stawiane zaprawom naprawczym (tabela).
Jednak z powodu wprowadzenia nowych metod badawczych odnośnie badań starzeniowych, różniących się w zasadniczy sposób od metod dotąd stosowanych, cel ten nie został w pełni osiągnięty.
Według normy PN-EN 1504-3:2006 [1] w badaniach i ocenie materiałów do naprawy betonu trwałą przyczepność do podłoża wykonanych warstw można ocenić po przeprowadzeniu następujących badań starzeniowych dotyczących kompatybilności cieplnej:
- oznaczeniu odporności na cykliczne zamrażanie i odmrażanie według normy PN-EN 13687-1:2008 [15]; zamrażanie jest prowadzone w roztworze nasyconym soli w temp. –15°C przez 2 godz., odmrażanie w wodzie w temp. 21°C przez 2 godz. (50 cykli);
- oznaczeniu odporności na zraszanie według normy PN‑EN 13687‑2:2008 [16] (cykliczny efekt burzy, tzw. szok cieplny); przechowywanie w powietrzu w temp. 60°C przez 5 godz. 45 min, zraszanie wodą o temp. 12°C przez 15 min (30 cykli);
- oznaczeniu odporności na cykle suszenia według normy PN‑EN 13687-4:2002 [17] (cykle termiczne na sucho); chłodzenie od temp. 21°C do temp. –25°C przez 15 min, zamrażanie w temp. –25°C, przez 153 min, ogrzewanie do temp. 55°C przez 27 min; wygrzewanie w temp. 55°C przez 153 min, chłodzenie do temp. 21°C przez 12 min, przy czym jeśli materiał spełnia wymagania odnośnie zamrażania i rozmrażania w nasyconym roztworze NaCl według normy PN‑EN 13687‑1:2008 [15], uznaje się, że spełnia także wymagania dwóch pozostałych badań.
Podstawowym badaniem kompatybilności cieplnej została nowa metoda badawcza – oznaczanie odporności na cykliczne zamrażanie i odmrażanie w nasyconym roztworze NaCl, nieznana dotąd większości producentów materiałów naprawczych.
Porównanie metod badań starzeniowych
Badania starzeniowe wymienione w normie PN-EN 1504-3:2006 [1] są ukierunkowane głównie na materiały naprawcze stosowane w budownictwie ogólnym, gdzie konstrukcja pracuje – z jednej strony jest zazwyczaj ogrzewana, a z drugiej poddana działaniu czynników klimatycznych.
W inżynierii komunikacyjnej natomiast, zwłaszcza w budownictwie mostowym, cała konstrukcja jest poddana działaniu czynników klimatycznych.
Norma PN-EN 1504-3:2006 [1] pomija oznaczenie właściwości wytrzymałościowych (wytrzymałości na ściskanie i zginanie) zapraw po badaniu odporności na zamrażanie i rozmrażanie w nasyconym roztworze NaCl. Należy także odnotować, że pominięto badanie wytrzymałości na zginanie.
W Polsce powszechnie stosowanym od kilkudziesięciu lat badaniem starzeniowym materiałów do naprawy betonu, oceniającym trwałą przyczepność do podłoża wykonanych warstw oraz zmianę właściwości wytrzymałościowych, było (i jest do tej pory) badanie mrozoodporności w komorze klimatyzacyjnej.
Badanie to w odniesieniu do materiałów naprawczych wykonywano na początku zgodnie z normą PN-85/B-04500 [18]. Obejmowało 50 cykli zamrażania i odmrażania w wodzie.
W związku z pojawianiem się pod koniec lat 90. materiałów naprawczych typu PCC na rynku polskim wydłużono liczbę cykli do 150 i zrównano ją ze standardowymi wymaganiami betonu (F150) według normy PN-88/B-06250 [19].
Obecnie wykonywane badanie jest zmodyfikowanym badaniem mrozoodporności betonu według normy PN-88/B-06250 [19]. Przyjęto w nim następujące warunki:
- zmiany temp. od –18°C ±2°C do +18°C ±2°C,
- rozmrażanie próbek w wodzie,
- zamrażanie próbek nasączonych wodą, ale po spuszczeniu wody z komory,
- liczbę cykli zamrażania i odmrażania 200 (do 2008 r. przyjmowano liczbę cykli zamrażania i odmrażania 150),
- po wykonaniu odpowiedniej liczby cykli zamrażania i odmrażania próbek materiałów naprawczych oznacza się:
- wytrzymałość na odrywanie od podłoża metodą „pull-off” po 200 cyklach zamrażania i odmrażania w wodzie, w temp. –18 ±2°C/+18 ±2°C,
- mrozoodporność po 200 cyklach zamrażania i odmrażania w wodzie, w temp. –18 ±2°C/+18 ±2°C (ubytek masy, spadek wytrzymałości na zginanie i spadek wytrzymałości na ściskanie).
Badania IBDiM
Aby wyeliminować z rynku zaprawy naprawcze nieodporne na działanie czynników klimatycznych, opracowano w Instytucie Badawczym Dróg i Mostów (IBDiM) Zalecenia do Udzielana Aprobat Technicznych nr Z/20090-03-019 [20] „Wyroby i systemy do naprawy konstrukcji betonowych (naprawy konstrukcyjne)”.
W dokumencie tym ocenę przydatności zapraw naprawczych oparto na znanym i powszechnie stosowanym badaniu mrozoodporności zapraw po 200 cyklach zamrażania i odmrażania oraz na badaniu przyczepności do podłoża, doraźnej i zmierzonej po 200 cyklach zamrażania i odmrażania.
W związku z nowym podejściem normy PN-EN 1504-3:2006 [1] do badań starzeniowych materiałów naprawczych bardzo ważną rzeczą stało się porównanie obu typów badań, tak by ocenić skuteczność (miarodajności) obu metod stosowanych przy wykonywaniu badań mrozoodporności.
Porównanie dotyczyło zarówno oznaczenia wytrzymałości na odrywanie zapraw od podłoża, jak i oznaczenie właściwości wytrzymałościowych zapraw po 200 cyklach zamrażania i odmrażania w wodzie oraz po 50 cyklach zamrażania w nasyconym roztworze soli odladzającej i rozmrażaniu w wodzie.
Uzyskane dotychczas wyniki badań potwierdzają pośrednio znaną dotąd zależność wpływu stężenia środków odladzających na uszkodzenia betonu. W wypadku działania soli odladzających (NaCl lub CaCl2) największe uszkodzenia mrozowe występują wówczas, gdy beton jest narażony na stosunkowo niskie koncentracje soli (roztwory od 2% do 4%).
Im większa natomiast koncentracja, tym mniejszy wpływ. Największą zgodność trendów otrzymanych wyników stwierdzono w wypadku badania przyczepności zapraw po 200 cyklach zamrażania i odmrażania w wodzie i po 50 cyklach zamrażania w nasyconym roztworze soli odladzającej i rozmrażaniu w wodzie.
Najmniejszą natomiast – w wypadku wyników badania spadku wytrzymałości na zginanie i ściskanie po 50 cyklach zamrażania w nasyconym roztworze soli odladzającej i rozmrażaniu w wodzie, gdzie otrzymywano często znaczny wzrost wytrzymałości na zginanie przy spadku wytrzymałości na ściskanie.
Podsumowanie
W naprawach betonowych konstrukcji inżynierskich za pomocą materiałów naprawczych trwałość i skuteczność wykonanych robót ocenia się zazwyczaj na podstawie przyczepności wykonanych warstw do podłoża.
Jeśli wykonana warstwa nie jest uszkodzona w miejscu wbudowania, nikt nie kwestionuje jakości wykonanych prac ani jakości wbudowanych materiałów.
Tymczasem to nie przyczepność możliwa do stwierdzenia lub pomiaru bezpośrednio po wykonaniu robót jest decydująca, lecz przyczepność trwała, taka, którą będzie wykazywał zastosowany materiał po kilkunastu lub kilkudziesięciu latach oraz zmiana w tym czasie właściwości wytrzymałościowych materiału.
Bardzo ważny jest więc odpowiedni dobór badań pozwalających ocenić materiały do naprawy betonu pod kątem trwałej przyczepności do podłoża wykonanych z nich warstw oraz zmianę ich właściwości wytrzymałościowych w czasie.
Literatura
- PN-EN 1504-3:2006, „Wyroby i systemy do ochrony i napraw konstrukcji betonowych. Definicje, wymagania, sterowanie jakością i ocena zgodności. Część 3: Naprawy konstrukcyjne i niekonstrukcyjne”.
- EN 1766:2000, „Products and systems for the protection and repair of concrete structures. Test methods. Reference concretes for testing”.
- EN 12190:1999, „Products and systems for the protection and repair of concrete structures. Test methods. Determination of compressive strength of repair mortar”.
- EN 1015-17:2000, „Methods of test for mortar for masonry. Determination of water-soluble chloride content of fresh mortars”.
- EN 1542:1999, „Products and systems for the protection and repair of concrete structures. Test methods. Measurement of bond strength by pull-off”.
- EN 12617-4:2002, „Products and systems for the protection and repair of concrete structures. Test methods. Determination of shrinkage and expansion”.
- EN ISO 13295:2007, „Dentistry. Mandrels for rotary instruments”.
- EN 13412:2006, „Products and systems for the protection and repair of concrete structures. Test methods. Determination of modulus of elasticity in compression”.
- EN 13687-1:2002, „Products and systems for the protection and repair of concrete structures. Test methods. Determination of thermal compatibility. Freeze-thaw cycling with de-icing salt immersion”.
- EN 13687-2:2002, „Products and systems for the protection and repair of concrete structures. Test methods. Determination of thermal compatibility. Thunder-shower cycling (thermal shock)”.
- EN 13687-4:2002, „Products and systems for the protection and repair of concrete structures. Test methods. Determination of thermal compatibility. Dry thermal cycling”.
- EN 13036-4:2011, „Road and airfield surface characteristics. Test methods Method for measurement of slip/skid resistance of a surface: The pendulum test”.
- EN 1770:1998, „Products and systems for the protection and repair of concrete structures. Test methods. Determination of the coefficient of thermal expansion”.
- EN 13057:2002, „Products and systems for the protection and repair of concrete structures. Test methods. Determination of resistance of capillary absorption”.
- PN-EN 13687-1:2008, „Wyroby i systemy do ochrony i napraw konstrukcji betonowych. Metody badań. Oznaczanie kompatybilności cieplnej. Część 1: Cykliczne zamrażanie–rozmrażanie przy zanurzeniu w roztworze soli odladzającej”.
- PN-EN 13687-2:2008, „Wyroby i systemy do ochrony i napraw konstrukcji betonowych. Metody badań. Oznaczanie kompatybilności cieplnej. Część 2: Cykliczny efekt burzy (szok cieplny)”.
- PN-EN 13687-4:2002, „Wyroby i systemy do ochrony i napraw konstrukcji betonowych. Metody badań. Oznaczanie kompatybilności termicznej. Część 4: Cykle termiczne na sucho”.
- PN-85/B-04500, „Zaprawy budowlane. Badania cech fizycznych i wytrzymałościowych”.
- PN-88/B-06250, „Beton zwykły”.
- Z/20090-03-019 „Wyroby i systemy do naprawy konstrukcji betonowych (naprawy konstrukcyjne)”.
- A.M. Neville, „Właściwości betonu”, Polski Cement, Kraków 2000.
- K. Germaniuk, T. Gajda, A. Królikowska, „Zalecenia IBDiM Udzielania Aprobat Technicznych Nr Z/2009-03-019. Wyroby i systemy do napraw konstrukcji betonowych”, Wydanie II, IBDiM, Warszawa 2010.
- K. Germaniuk, „Uwagi mostowca do normy PN-EN 1504. Artykuł dyskusyjny”, „Materiały Budowlane”, nr 2/2009, s. 5–7.
- K. Germaniuk, „Nowoczesne materiały i technologie związane z utrzymaniem mostów” [w:] „Vademecum Inżyniera, Budownictwo Mostowe”, Warszawa 2013, s. 5–9.
- G. Łagoda, T. Gajda, „Badania materiałów do napraw konstrukcji mostowych”, XXV konferencja naukowo-techniczna „Awarie Budowlane”, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Szczecin 2011, t. II, s. 127–134.
- G. Łagoda, T. Gajda, „Research on concrete repair materials”, konferencja SEMC 2013 University of Cape Town, Balkema/Taylor & Francis, pp. 879–880 (wersja skrócona, pełna na płycie CD).