Izolacyjność fasad podwójnych
Symulacje energetyczne wybranych przypadków
Jaki jest wpływ fasad podwójnych w warunkach klimatycznych Polski na poprawę izolacyjności termicznej?
www.sxc.hu
Jednym z bardziej powszechnych rozwiązań obudowy zewnętrznej budynków reprezentacyjnych są systemy wykorzystujące ściany osłonowe pokryte szkłem. Poprawa charakterystyki energetycznej tego typu systemów na przestrzeni całego roku stanowi istotne wyzwanie, zarówno dla projektantów, jak i samych producentów systemów.
Zobacz także
M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
Ultrapur Sp. z o.o. Pianka poliuretanowa a szczelność budynku
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który...
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który określa właściwości izolacyjne materiału. Jednocześnie jest współczynnikiem wysoce niedoskonałym – określa, jak dany materiał może opierać się utracie ciepła poprzez przewodzenie.
Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.
Tradycyjne podejście polega głównie na poprawie izolacyjności cieplnej zestawów szybowych przy jednoczesnym ograniczeniu przepuszczalności całkowitej energii promieniowania słonecznego. Tego typu rozwiązania w większości należą do grupy systemów statycznych, w których fizyczne parametry fasady są niezmienne w czasie.
Oznacza to, że nie ma możliwości regulowania temperatury przestrzeni fasady, czyli w przypadku niskich temperatur zewnętrznych - buforowania, natomiast w przypadku wysokich zysków od promieniowania słonecznego - dodatkowego przewietrzania. Informacje o efektywności energetycznej silnie przeszklonych budynków wyposażonych w fasady pojedyncze można znaleźć m.in. w pracach Twarowskiego [1], Laskowskiego [2], a także Narowskiego i Sowy [3].
Alternatywą dla systemów fasad pojedynczych SSF (ang. Single Skin Facade) mogą być systemy fasad podwójnych DSF (ang. Double Skin Facade) należące do grupy systemów dynamicznych. Systemy podwójne stosowane są z powodzeniem od ok. 20 lat w krajach o klimacie zbliżonym do klimatu Polski. Od wielu lat prowadzone są też liczne prace badawcze nad analizą i optymalizacją tego typu rozwiązań [4-8].
W szczególnych przypadkach systemy te są z powodzeniem stosowane jako usprawnienie termomodernizacyjne stanowiące alternatywę dla metod tradycyjnych, docieplenia ścian lub wymiany okien. Tego typu przykłady wraz z podaniem spodziewanych efektów opisane zostały m.in. w pracach Heima [9] oraz Heima, Sprysch i Romanowskiej [10].
Artykuł ma na celu określenie potencjału energetycznego fasad podwójnych w warunkach klimatycznych Polski pod kątem poprawy izolacyjności termicznej w porównaniu z rozwiązaniami opartymi na fasadach pojedynczych. Praca ma charakter teoretyczny, a wyniki uzyskano na drodze dynamicznych symulacji energetycznych budynków. Przypadki ograniczono do kilku wybranych schematów i sposobów sterowania przepływem powietrza. Wyboru dokonano na podstawie wcześniejszych szczegółowych analiz opisanych m.in. w pracach Heima i Jabłońskiego [11] oraz Heima i Janickiego [12].
Rys historyczny
Pierwsze zastosowania rozwiązań wykorzystujących fasady podwójne datuje się na połowę XIX w., choć pokrewne sposoby buforowania budynków od środowiska zewnętrznego można znaleźć już w rozwiązaniach spotykanych w okresie starożytnym. W 1849 r. Jean-Baptiste Jobard, będący w owym czasie dyrektorem Muzeum Industrializmu w Brukseli, opisał pierwowzór mechanicznie wentylowanej fasady zbudowanej z wielu przekryć. Zwrócił on już wtedy uwagę na sensowność zastosowania rozwiązania, w którym w przestrzeni pomiędzy dwoma przeszkleniami zimą przepływa powietrze gorące, natomiast latem powietrze schłodzone.
Ana Maria Leon Crespo twierdzi, że pierwszy przypadek podjęcia tematu DSF pojawił się w 1903 r. w Steiff Factory w Giengen w Niemczech. Według niej pomysłodawcy chcieli zmaksymalizować zyski światła dziennego przy jednoczesnym uwzględnieniu wpływu warunków niskich temperatur zewnętrznych i silnych wiatrów występujących w tym regionie.
W wyniku rozwiązania zaprojektowano budynek, którego strukturę zamknięto w trzech kondygnacjach. Dwa górne piętra przeznaczono na pracownie i pomieszczenia pracownicze, a na parterze zlokalizowano magazyn. Budynek był na tyle udany, że doczekał się powielenia w postaci zbudowanych w 1904 r. i 1908 r. kopii z tym samym systemem DSF, ale ze względów ekonomicznych przy użyciu drewna zamiast stali, jako materiału konstrukcyjnego. Warto podkreślić, że wszystkie te budynki są nadal z powodzeniem eksploatowane.
W 1903 r. Otto Koloman Wagner, architekt i urbanista pochodzenia austriackiego, wygrał konkurs na zaprojektowanie budynku Pocztowej Kasy Oszczędnościowej w Wiedniu. Budynek wzniesiony w dwóch etapach, od roku 1904 do 1912, posiada system DSF wkomponowany w świetlik holu głównego.
Pod koniec lat 20. ubiegłego wieku opracowaniu fasad podwójnych zaczęły przyświecać inne priorytety. W Rosji Moisei Ginzburg przeprowadzał eksperymenty nad zastosowaniem elementów fasad podwójnych przy budowie komunalnego bloku mieszkalnego Narkomfin (1928). W projekcie Ginzburg rozważał zastosowanie rożnych rozwiązań systemów okien. Zaprojektował podwójne przeszklenie w postaci poziomych pasów osadzonych wzdłuż budynku na wspornikach pionowych. Pomysł ten jednak nie trafił w gusta użytkowników i okna wymieniono na standardowe.
Także Le Corbusieur, który brał udział w projektowaniu Centrosoyusu w Moskwie, postulował, aby budynki zaopatrzyć w wentylowaną kurtynę powietrzną utworzoną we wnętrzu szklanej fasady podwójnej. W 1929 r. przedstawił projekt La Cite de Refuge, w którym zastosował pomysł mur neutralisant, czyli DSF, dla której zyski i straty ciepła miały być zniwelowane dzięki obiegowi powietrza, o temperaturze wnętrza, w przestrzeni fasady. Oczywiście Le Corbusier nie wziął pod uwagę nakładów energetycznych niezbędnych do ogrzania/schłodzenia powietrza, dlatego po uwzględnieniu kosztów realizacji projekt został porzucony. Projektant nie poddał się jednak i przeprowadził w późniejszym czasie kilka eksperymentów w hucie szkła w Saint-Gobain.
Pierwsze publikacje badań na temat przepływu powietrza w systemach okiennych pojawiły się w latach 50. XX w. w Skandynawii. Ich celem była poprawa efektywności energetycznej oraz komfortu cieplnego budynków mieszkalnych. W 1957 r. Szwedzi wprowadzili pierwszy patent związany z przepływem powietrza w oknach, natomiast w r. 1967 firma EKONO Company wybudowała pierwszy budynek biurowy wyposażony w system wentylowanych okien w Helsinkach w Finlandii.
Od tego czasu aż do początku lat 70. nie nastąpił praktycznie żaden znaczący postęp w dziedzinie DSF. Jednak lata 1973-79 przyniosły kryzys energetyczny, a wraz z nim odżył duch poszukiwań nowych technologii. Niemal z dnia na dzień pojęcia efektywności energetycznej oraz komfortu cieplnego przestały być zagadnieniami luksusowymi dotyczącymi jedynie krajów bogatych o niesprzyjającym klimacie.
W późnych latach 70. oraz wczesnych 80. budynki z mechanicznie wentylowanymi fasadami zaczęły być powszechniej stosowane, zwłaszcza na terenie Europy. Przyświecała temu wymieniona już wcześniej idea zmniejszenia strat ciepła przez przenikanie zimą oraz minimalizacji zysków słonecznych latem. Jako przykład takiej realizacji wymienia się fasadę budynku Brytyjskiej Kampanii Cukrowej w Peterborough.
Wreszcie na początku lat 90. rosnąca świadomość energetyczna oraz dojrzewająca myśl polityczna zielonych domów doprowadziła do powstania dobrej koniunktury dla fasad podwójnych. Korporacje coraz chętniej, chcąc być postrzegane jako ekologiczne, zaczęły poszukiwać nowych rozwiązań architektonicznych dla swoich budynków. Nie bez znaczenia był także błyskawiczny rozwój dziedziny technologii komputerowych, które dostarczyły projektantom potężnych narzędzi ułatwiających projektowanie, obliczenia i modelowanie nowych systemów.
Spore nadzieje pokładano w fasadach podwójnych przy projektowaniu budynków wysokich, gdzie zaplecze finansowe pozwala na zastosowanie nowoczesnych, drogich technologii. Otworzyło to furtkę dla stosowania fasad podwójnych, które nie dość, że idealnie odpowiadają wymogom estetycznym korporacji i przedsiębiorstw, to zapewniają, nawet w przypadku drapaczy chmur, możliwość otwierania okien, co przy fasadach pojedynczych i bardzo silnych przepływach powietrza na dużych wysokościach jest praktycznie niemożliwe.
Przykładowe rozwiązanie
Na potrzeby analiz posłużono się systemem jednopłaszczyznowych (rys. 1), naturalnie wentylowanych fasad podwójnych, spełniających funkcje kurtyny powietrznej (latem) lub bufora termicznego (zimą). Zastosowany system kurtyny powietrznej sprawia, że w przypadku braku nasłonecznienia dodatkowe poszycie poprawia izolacyjność termiczną budynku.
Podczas występowania promieniowania słonecznego w przestrzeni fasady wywoływany jest ruch powietrza będący efektem zjawiska ciągu kominowego. Dodatkowo w obu przypadkach przepływ powietrza wspomagany jest oddziaływaniem wiatru. Ilość zysków jest regulowana przez zmianę wielkości otwarć, a tym samym służy doprowadzeniu chłodnego i odprowadzaniu na zewnątrz nagrzanego powietrza.
Wszystkie symulacje przeprowadzone zostały na podstawie danych pogodowych Typowego Roku Meteorologicznego pochodzących z Lotniskowej Stacji Meteorologicznej Łodź-Lublinek [13]. Symulacje obejmują pełen rok kalendarzowy. Wartości współczynnika redukcji dystrybucji ciśnienia przyjęto dla wlotów (przy podstawie fasady) o wartości jak dla ściany średnio wyeksponowanej, natomiast dla wylotów powietrza o wartości jak dla dachu o nachyleniu poniżej 10°, średnio wyeksponowanego na działanie wiatru [14].
Model termiczny budynku został oparty na metodzie bilansu cieplnego w przestrzeni dyskretyzowanej za pomocą objętości skończonych. Oddziaływanie promieniowania słonecznego uwzględniono, wykorzystując procesor śledzenia promieniowania bezpośredniego połączony z dystrybucją promieniowania rozproszonego [15]. Przepływ powietrza określony został przy użyciu metody bilansu sieciowego zgodnie z zasadą zachowania przepływu masy. Przestrzeń fasady została podzielona na wiele stref reprezentowanych za pośrednictwem węzłów połączonych ścieżkami przepływu.
Pojedyncze strefy biurowe zbudowano na podstawie założeń geometrycznych modelu BESTEST Case 600 [16]. Konstrukcję podstawowej komórki wyjściowej stworzono w oparciu o założenie równoważnej pojemności cieplnej wszystkich przegród pełnych. Zaproponowano, by transparentna kurtyna wewnętrzna była szklona podwójnie, zewnętrzna zaś szklona pojedynczo.
W celu precyzyjnej oceny rozkładu temperatury powietrza oraz natężenia jego przepływu w funkcji wysokości przestrzeń fasady została podzielona na kilka mniejszych stref termicznych. Warunki brzegowe pomiędzy strefami, dla których możliwy jest przepływ powietrza, określono jako swobodne.
Rozpatrywany przypadek fasady obejmował wycinek budynku biurowego wielostrefowego, na którego całkowitą kompozycję składa się 5×5 pomieszczeń przypadających na każdą z elewacji, skierowanych idealnie na północ, południe, wschód i zachód. Ograniczony zakres analizy obejmował przypadek przedstawiony na (rys. 2) z tym jednak założeniem, że wpływ zjawiska konwekcji w przypadku fasady podwójnej wymagał objęcia zasięgiem całej wysokości elewacji. Sposób przewietrzania fasady i miejsca usytuowania wlotów powietrza zamieszczono na (rys. 3).
Przepływ powietrza został obliczony w oparciu o model sieciowy [15]. Wyróżniono dwa węzły zewnętrzne (dolny oraz górny) oraz pięć węzłów wewnętrznych, po jednym przypisanym do każdej ze stref fasady (rys. 4). Węzły zostały połączone za pośrednictwem odpowiednich komponentów. Wloty oraz wyloty powietrza zaproponowano jako szczeliny o szerokości 50 mm i długościach odpowiadających procentowi otwarcia, elementy oddzielające kolejne kondygnacje zdefiniowano jako otwarcia o powierzchni przelotowej 6,4 m2, co odpowiada 80% maksymalnej przepustowości przekroju poziomego fasady.
Przewiduje się, że poprawnie dobrany w zależności do pory roku poziom otwarć wlotów i wylotów oraz ich położenie zoptymalizowane w zależności od kierunku wiatru będą miały wpływ na redukcję zapotrzebowania na energię do ogrzewania lub chłodzenia [12]. Podobnie przewiduje się, że zastosowanie zoptymalizowanego pod opisanym kątem systemu fasad podwójnych pozwoli zredukować zapotrzebowanie na energię w odniesieniu do budynku wyposażonego w pojedynczą, całkowicie przeszkloną fasadę.
Głównym sposobem sprawdzenia efektu zastosowania fasad podwójnych oraz wpływu sterowania przepływem powietrza w fasadzie na efektywność energetyczną było stworzenie serii zorientowanych względem czterech stron świata modeli fasad DSF oraz SSF (podwójnych oraz pojedynczych), uwzględniając w przypadku podwójnych rożne wielkości, 0% lub 80% otwarcia powierzchni napływu powietrza [12].
Symulacji dokonano przy założeniu braku wewnętrznych zysków ciepła oraz według ujednoliconego modelu sterowania temperaturą powietrza wewnątrz stref biurowych. Ponieważ poszczególne lata różnią się między sobą liczbą dni wolnych od pracy, czynnik ten wyeliminowano dzięki wykorzystaniu płaskiego schematu kontroli temperatury. W każdym z 365 dni roku przyjęto 3 okresy grzewcze.
Symulacje energetyczne i analiza wyników
Obliczenia wykonano przy wykorzystaniu metody numerycznej opisanej w pracy Clarke’a [15]. Przedstawione wyniki opisują historię zmian temperatury powietrza w fasadzie dla wybranych miesięcy, odpowiednio: stycznia i czerwca. W przypadku stycznia przedstawione wyniki uzyskano przy założeniu odcięcia przepływu powietrza w fasadzie (0% otwarcia), dla czerwca zaś - maksymalnego przepływu (80% otwarcia). W styczniu (rys. 5), przy założeniu całkowitego odcięcia fasady od możliwości napływu do wnętrza powietrza zewnętrznego, zaobserwowano okresowe wzrosty temperatury w wyniku fototermicznej konwersji energii promieniowania słonecznego. Tym samym w opisywanych okresach strumień zysków ciepła z wnętrza fasady jest większy niż strumień strat ciepła do środowiska zewnętrznego.
W tym okresie fasada działa jako swoista strefa buforowa o znacznych zyskach ciepła od promieniowania słonecznego. W okresie wysokich temperatur zewnętrznych rolą tego typu rozwiązań jest ochrona pomieszczeń przed przegrzewaniem. Jest to możliwe dzięki zastosowaniu systemu wentylacji w przestrzeni fasady, a tym samym wyprowadzenie części zysków ciepła od promieniowania słonecznego. Rozkład temperatury dla tego przypadku przedstawiono na (rys. 6).
Tym razem dąży się do jak najmniejszych różnic w wartościach temperatury lub nawet do przechłodzenia przestrzeni fasady w stosunku do otaczającego powietrza. Różnice w otrzymanych wartościach temperatur są niewielkie w stosunku do ilości zysków od promieniowania słonecznego odprowadzanych poza fasadę na drodze wymiany powietrza. Potwierdzenie efektów energetycznych widoczne jest na kolejnych rysunkach.
Na rys. 7 i 8 zamieszczono czasowe przebiegi współczynnikow temperaturowych określonych jako:
X= ( Ti-Tf)/ (Ti-Te),
gdzie:
Ti – wynikowa temperatura wewnętrzna [°C],
Tf – wynikowa temperatura w przestrzeni fasady [°C],
Te – temperatura powietrza zewnętrznego [°C].
Ustalono temperaturę wewnętrzną dla zimy na poziomie +20°C, dla lata zaś: +26°C. Najkorzystniejszy przypadek dla okresu zimowego występuje wtedy, kiedy współczynnik osiąga wartości minimalne, natomiast dla okresu letniego maksymalne. Jak wynika z danych przedstawionych na rys. 7 i 8, otrzymane wyniki dla przeważającego okresu (szczególnie w styczniu) należy uznać za zadowalające.
Przedstawione w dalszej części pracy wyniki dotyczą całkowitego zapotrzebowania na energię do chłodzenia/ogrzewania wszystkich pomieszczeń biurowych objętych analizą, dla kolejnych miesięcy roku kalendarzowego (rys. 9–10, 11–12) oraz sumaryczne wykresy rocznego zapotrzebowania na energię (rys. 13–14). Zastosowanie dodatkowego poszycia w postaci fasady przeszklonej oraz prawidłowo dobrana strategia wentylacji powstałej w ten sposób pustki powietrznej pozwalają oszacować oszczędności energii do ogrzewania i chłodzenia pomieszczeń przyległych do fasady.
Porównując zapotrzebowanie na energię do ogrzewania dla systemu DSF, przy całkowicie zamkniętych/otwartych wlotach, do systemu SSF otrzymamy średnio 30% zmniejszenie zapotrzebowania na energię w skali roku na korzyść systemów DSF. W przypadku fasady podwójnej prawidłowa strategia jej wentylacji prowadzi do kolejnej 15% oszczędności energii. Znaczną redukcję odnotowano natomiast, porównując energię niezbędną do chłodzenia pomieszczeń dla systemów fasad podwójnych i pojedynczych.
Przeciętnie po nałożeniu dodatkowego naturalnie wentylowanego poszycia oszczędności te wynosiły ok. 60%. Wartość ta może zostać poddana dyskusji ze względu na uproszczony model dystrybucji energii promieniowania słonecznego przez elementy oszklone, który zakłada, że po przejściu przez pierwszą warstwę transparentną promieniowanie ulega całkowitemu rozproszeniu. Aby dokonać walidacji modelu obliczeniowego i oceny wiarygodności przeprowadzonych symulacji, niezbędne jest przeprowadzenie długoterminowych badań na modelu rzeczywistym, wykonanym w postaci stanowiska laboratoryjnego. Jest to jednak niezwykle trudne ze względu na koszty tego typu instalacji.
Podsumowanie
W ciągu ostatnich kilku dekad postęp w dziedzinie technologii budowlanych oraz stale wzrastająca troska o środowisko naturalne sprawiły, że projektanci budynków coraz chętniej sięgają do nowatorskich rozwiązań konstrukcyjnych lub starają się usprawnić te istniejące. Obszar ich pracy nie ogranicza się tylko do zaprojektowania bezpiecznej konstrukcji budynku - muszą oni zwracać baczną uwagę także na zagadnienia związane z wydajnością energetyczną, zapewnieniem odpowiedniego komfortu wewnętrznego oraz estetyki i ergonomii.
Koncepcja fasad podwójnych, choć wcale nie nowatorska, stanowi bardzo interesującą alternatywę dla klasycznych fasad budynków biurowych i użyteczności publicznej, od których wymaga się reprezentacyjności i stworzenia sprzyjających warunków pracy. Komfort użytkowania budynków wyposażonych w systemy DSF ma się opierać na założeniach odpowiedniej przepuszczalności światła dziennego przez fasadę przy jednoczesnej minimalizacji nakładów energetycznych na ogrzewanie i chłodzenie oraz przy założeniu wysokiego komfortu termicznego obiektu.
Naturalnie wentylowane fasady są obecnie dość powszechnie stosowane, jednak mimo prostoty ich budowy kompleksowe zaprojektowanie całego systemu stanowi duże wyzwanie. Wynika to z tego, że w przestrzeni obudowy zachodzą stałe wahania temperatury i przepływu powietrza. Sama wielkość natężenia przepływu jest bardzo podatna na zmiany parametrów klimatu, w skrajnych przypadkach zaś może nastąpić nawet odwrócenie jego kierunku.
Efekty określone na podstawie symulacji pokazują, że przewidywanie skuteczności tego typu systemów stanowi złożone zagadnienie modelowania, które powinno opierać się na skrupulatnej analizie wspartej doświadczeniem praktycznym.
Przy założeniu odpowiedniego sterowania przepływem powietrza wyznaczono ilość energii niezbędnej do ogrzewania i chłodzenia pomieszczeń w całym roku. Otrzymane wyniki pozwalają oszacować, że przy założeniu zmiennej od 0% do 80% wielkości otwarcia wlotów/wylotów maksymalne oszczędności energii na ogrzewanie wynoszą od 12% dla orientacji północnej (N) do 19% dla orientacji południowej (S). W przypadku oszczędności energii na chłodzenie jest to odpowiednio od 23% (N) do 21% (S).
Literatura
- M. Twarowski, "Słońce w architekturze", Arkady, Warszawa, 1996.
- L. Laskowski, "Ochrona cieplna i charakterystyka energetyczna budynku", Oficyna Wydawnicza Politechniki Warszawskiej, wyd. 2, Warszawa 2008.
- P. Narowski, J. Sowa, "Problemy określania strumieni energii od nasłonecznienia w silnie przeszklonych budynkach o skomplikowanym kształcie”, materiały VI Sympozjum Naukowego "Budownictwo Ekologiczne 2009", P. Klemm i D. Heim [red.], Politechnika Łódzka, Łódź 2009, s. 51–68.
- K. Gertis K, "New facade developments – do they make sense from a building physics point of view? Part 2: glass double facades", "Bauphysik" 2/1999, s. 54–66 (in German).
- Belgian Building Research Institute 2002. Source book for better understanding of conceptual and operational aspects of active facades, "Department of Building Physics, Indoor Climate and Building Services, BBRI", version 1.
- B. Bielek, M. Bielek, M. Palko, "Dvojite transparentne fasady budov, 1. Diel: Historia, vyvoj, simulacia, experiment a konstrukcja torby", Coreal, spol. S r.o., Bratislava 2002.
- J. Hensen, M. Bartak, F. Drkal, "Modeling and simulation of a double-skin facade system", ASHRAE Transactions, Atlanta 2002, USA, vol. 108:2.
- D. Saelens, H. Hens, "Comparison of the energy demand of multiple-skin facade", [w:] "Research in Building Physics", J. Carmeliet, H. Hens, G. Vermeir [ed.], Balkema Publishers, Leiden 2003, s. 503–511.
- D. Heim, "Termomodernizacja budynkow z wykorzystaniem fasad podwójnych", "Energia i Budynek", nr 5/2007, Vol. 5, s. 20–22.
- D. Heim, M.V. Sprysch, A. Romanowska, "Podwójna eksperymentalna fasada budynku uniwersyteckiego w Braunschweigu", Zeszyty Naukowe Politechniki Rzeszowskiej "Budownictwo i Inżynieria Środowiska", z. 40, Rzeszów 2006, nr 229, s. 213–218.
- D. Heim, Ł. Jabłoński, "Rozdział 3. Charakterystyka termiczna fasad podwójnych o rożnych zdolnościach do akumulowania ciepła”, [w:] „Problemy naukowo-badawcze budownictwa", t. III: "Materiały Technologie i organizacja w budownictwie", Monografia KILiW PAN, Białystok 2007, s. 177–184.
- D. Heim, M. Janicki, "Korzyści energetyczne zastosowania wentylowanych fasad podwojnych w warunkach klimatycznych Polski Środkowej", Zeszyty Naukowe Politechniki Rzeszowskiej "Budownictwo i Inżynieria Środowiska", z. 54, Rzeszow 2010.
- P. Narowski, D. Heim, "Dane klimatyczne dla potrzeb modelowania transportu ciepła i wilgoci w przegrodach budowlanych", [w:] "Fizyka Budowli w Teorii i Praktyce", t. 3, Łódź 2008, s. 85–92.
- J.L.M. Hensen, "Simulation of building energy and indoor environmental quality – some weather data issues", [w:] „Proc. Int. Workshop on Climate data and their applications in engineering", 4–6 October, Czech Hydrometeorological Institute in Prague, 1999.
- J.A. Clarke, "Energy simulation in building design", 2nd-edition, Butterworth-Heineman, Oxford 2001.
- ANSI/ASHRAE STANDARD, 140 Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs.