Projektowanie przegród zewnętrznych w świetle nowych wymagań cieplno-wilgotnościowych
Analiza wymagań w zakresie ochrony cieplno-wilgotnościowej | Wymagane wartości Uc(maks.) | Wymagane wartości EP | Ochrona wilgotnościowa
Projektowanie przegród zewnętrznych w świetle nowych wymagań cieplno-wilgotnościowych / Envelope design in the light of new heat and humidity requirements
Archiwum autora
Po wielu miesiącach dyskusji, konsultacji i ustaleń wprowadzono zmiany w wymaganiach cieplno‑wilgotnościowych, zawartych w rozporządzeniu w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. Nowe wymogi spowodują zwiększenie grubości powszechnie wykorzystywanych izolacji cieplnych (styropianu i wełny mineralnej) oraz częstsze stosowanie nowych materiałów (np. płyt z poliizocyjanuratu, płyt rezolowych, aerożeli, paneli próżniowych). Przyczynią się również do powszechniejszego wykorzystania odnawialnych źródeł energii w budynku.
Zobacz także
M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
Ultrapur Sp. z o.o. Pianka poliuretanowa a szczelność budynku
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który...
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który określa właściwości izolacyjne materiału. Jednocześnie jest współczynnikiem wysoce niedoskonałym – określa, jak dany materiał może opierać się utracie ciepła poprzez przewodzenie.
Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.
ABSTRAKT |
---|
W artykule omówiono wymagania cieplno-wilgotnościowe zawarte w Rozporządzeniu Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniającym rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. Dokonano oceny przykładowych rozwiązań konstrukcyjno-materiałowych ścian zewnętrznych dwuwarstwowych pod kątem stopniowo zaostrzanych wymagań cieplnych. Przeanalizowano także wybrane złącza w zakresie ryzyka rozwoju pleśni i grzybów pleśniowych. |
The article discusses the heat and humidity requirements included in the Ordinance of the Minister of Transport, Construction and Maritime Economy of 5 July 2013 replacing the ordinance on technical conditions of buildings and their locations. Example structural and material solutions of double layer external walls were evaluated taking into account the more and more strict heat requirements. Binders were analysed for the risk of developing mould and mould fungi. |
Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (WT 2013) [1], zakłada stopniowe (następujące w latach 2014–2021) zaostrzanie wymagań w zakresie wartości granicznych współczynnika przenikania ciepła Uc(maks.) przegród zewnętrznych oraz wskaźnika zapotrzebowania na nieodnawialną energię pierwotną EP.
Analiza wymagań w zakresie ochrony cieplno‑wilgotnościowej
W WT 2013 [1] przewidziano dwie metody pozwalające spełnić w nowo projektowanych i przebudowywanych budynkach wymaganie dotyczące utrzymania na racjonalnie niskim poziomie ilości energii cieplnej potrzebnej do użytkowania budynku zgodnie z jego przeznaczeniem (§ 328 rozporządzenia [1]):
- pierwsza polega na takim zaprojektowaniu przegród w budynku, aby wartości współczynnika przenikania ciepła Uc(maks.) [W/(m2·K)] przegród zewnętrznych, okien, drzwi oraz technika instalacyjna odpowiadały wymaganiom izolacyjności cieplnej,
- druga to zaprojektowanie budynku pod kątem zapotrzebowania na nieodnawialną energię pierwotną na jednostkę powierzchni pomieszczeń o regulowanej temperaturze powietrza w budynku, lokalu mieszkalnym lub części budynku stanowiącej samodzielną całość techniczno-użytkową – EP [kWh/(m²·rok)].
Należy w tym miejscu podkreślić, że wymagane jest jednoczesne spełnienie tych dwóch wymogów – zarówno w zakresie wartości Uc(maks.), jak i EP.
Wymagane wartości Uc(maks.)
W rozporządzeniu [1] zaostrzeniu uległy wymagania cząstkowe dotyczące izolacyjności cieplnej ścian zewnętrznych, dachów, podłóg oraz okien i drzwi. Jednocześnie w nowych wymaganiach nie odgrywa roli typ przegrody (wielo- czy jednowarstwowa) ani przeznaczenie obiektu (mieszkalny, użyteczności publicznej, magazynowy, gospodarczy itp.).
Wartości maksymalne współczynnika przenikania ciepła ścian, podłóg na gruncie, stropów, dachów i stropodachów wraz z harmonogramem wchodzenia w życie wymagań, zgodnie z załącznikiem 2 do rozporządzenia [1], przedstawiono w tabeli 1.
Natomiast wartości maksymalne współczynnika przenikania ciepła okien, drzwi balkonowych i drzwi zewnętrznych wraz z harmonogramem wchodzenia w życie wymagań, zgodnie z załącznikiem 2 do rozporządzenia [1], zawarto w tabeli 2.
W wypadku budynku produkcyjnego, magazynowego i gospodarczego dopuszcza się większe wartości współczynnika U niż Uc(maks.) oraz Uc(maks.) określone w tabelach 1 i 2, jeśli uzasadnia to rachunek efektywności ekonomicznej inwestycji, obejmujący koszt budowy i eksploatacji budynku.
Ponadto w budynku mieszkalnym, zamieszkania zbiorowego, użyteczności publicznej, produkcyjnym, magazynowym i gospodarczym podłoga na gruncie w pomieszczeniu ogrzewanym powinna mieć izolację cieplną obwodową wykonaną z materiału izolacyjnego w postaci warstwy o oporze cieplnym co najmniej 2,0 (m²·K)/W, przy czym opór cieplny warstw podłogowych oblicza się zgodnie z normami PN-EN ISO 13370:2008 [2] i PN-EN ISO 6946:2008 [3].
W rozporządzeniu [1] określono także wymagania w zakresie izolacji cieplnej przewodów rozdzielczych instalacji c.o. i c.w.u. oraz dodatkowe wymagania dotyczące okien (załącznik 2, pkt 2).
Wymagane wartości EP
Maksymalne wartości wskaźnika EP [kWh/(m²·rok)], określającego roczne obliczeniowe zapotrzebowanie na nieodnawialną energię pierwotną do ogrzewania, wentylacji, chłodzenia, przygotowania ciepłej wody użytkowej oraz oświetlenia wbudowanego, oblicza się według następującego wzoru [1]:
EP = EPH + W + ΔEPc + ΔEPL [kWh/(m²·rok)]
gdzie:
EPH + W – maksymalna wartość wskaźnika EP na potrzeby ogrzewania, wentylacji oraz przygotowania ciepłej wody użytkowej, określona zgodnie z tabelą 3 [kWh/(m²·rok)],
ΔEPc – cząstkowa maksymalna wartość wskaźnika EP na potrzeby chłodzenia, określona zgodnie z tabelą 4 [kWh/(m²·rok)],
ΔEPL – cząstkowa maksymalna wartość wskaźnika na potrzeby oświetlenia, określona zgodnie z tabelą 4 [kWh/(m²·rok)].
Harmonogram czasowy wprowadzenia wymagań oraz maksymalne wartości wskaźnika EPH + W na potrzeby ogrzewania, wentylacji oraz przygotowania ciepłej wody użytkowej, przedstawiono w tabeli 3.
Harmonogram czasowy wprowadzenia wymagań oraz wartości wskaźników ΔEPc i ΔEPL przedstawiono w tabeli 4.
W przypadku budynków o różnych funkcjach użytkowych maksymalne wartości wskaźnika EP określającego roczne obliczeniowe zapotrzebowanie budynku na nieodnawialną energię pierwotną do ogrzewania, wentylacji, chłodzenia, przygotowania ciepłej wody użytkowej i oświetlenia wbudowanego w ciągu roku oblicza się według następującego wzoru:
EPm= ∑i (EPi·Af,i)/∑i Af,i [kWh/(m²·rok)]
gdzie:
EPi – maksymalna wartość wskaźnika EP określającego roczne obliczeniowe zapotrzebowanie na nieodnawialną energię pierwotną do ogrzewania, wentylacji, przygotowania ciepłej wody użytkowej, chłodzenia oraz oświetlenia wbudowanego w odniesieniu do części budynku o jednolitej funkcji użytkowej o powierzchni Af,i [kWh/(m²·rok)], obliczona zgodnie ze wzorem EP = EPH + W + ΔEPc + ΔEPL [kWh/(m²·rok)], przy uwzględnieniu cząstkowych wskaźników wartości EP,
Af,i – powierzchnia użytkowa ogrzewana (chłodzona) części budynku o jednolitej funkcji użytkowej [m²].
Ochrona wilgotnościowa
Sprawdzenie warunku ochrony wilgotnościowej – ryzyka występowania kondensacji na wewnętrznej powierzchni przegrody oraz kondensacji międzywarstwowej – wynika z §321.1. Rozporządzenia Ministra Infrastruktury z dnia 6 listopada 2008 r. zmieniającego rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [4], oraz z zapisów WT 2013 [1]:
„Na wewnętrznej powierzchni nieprzezroczystej przegrody zewnętrznej nie może występować kondensacja pary wodnej umożliwiająca rozwój grzybów pleśniowych.
2. We wnętrzu przegrody, o której mowa w ust. 1, nie może występować narastające w kolejnych latach zawilgocenie spowodowane kondensacją pary wodnej.
3. Warunki określone w ust. 1 i 2 uważa się za spełnione, jeśli przegrody odpowiadają wymaganiom określonym w pkt 2.2. załącznika nr 2 do rozporządzenia” [1].
Warunki spełnienia wymagań dotyczących powierzchniowej kondensacji pary wodnej przedstawiono w załączniku 2, pkt 2.2 do WT 2013 [1]:
„2.2.1. W celu zachowania warunku, o którym mowa w §321 ust. 1. rozporządzenia, w odniesieniu do przegród zewnętrznych budynków mieszkalnych, zamieszkania zbiorowego, użyteczności publicznej i produkcyjnych, magazynowych i gospodarczych rozwiązania przegród zewnętrznych i ich węzłów konstrukcyjnych powinny charakteryzować się współczynnikiem temperaturowym fRsi o wartości nie mniejszej niż wymagana wartość krytyczna, obliczona zgodnie z polską normą dotyczącą obliczania temperatury powierzchni wewnętrznej koniecznej do uniknięcia krytycznej wilgotności powierzchni i kondensacji międzywarstwowej.
2.2.2. Wymaganą wartość krytyczną współczynnika temperaturowego fRsi w pomieszczeniach ogrzewanych do temperatury co najmniej 20°C w budynkach mieszkalnych, zamieszkania zbiorowego i użyteczności publicznej należy określać według rozdziału 5 polskiej normy, o której mowa w pkt 2.2.1., przy założeniu, że średnia miesięczna wartość wilgotności względnej powietrza wewnętrznego jest równa Φ = 50%, przy czym dopuszcza się przyjmowanie wymaganej wartości tego współczynnika równej 0,72.
2.2.3. Wartość współczynnika temperaturowego charakteryzującego zastosowane rozwiązanie konstrukcyjno-materiałowe należy obliczać:
1) dla przegrody – według polskiej normy (PN-EN ISO 13788:2003 [5]);
2) dla mostków cieplnych przy zastosowaniu przestrzennego modelu przegrody – według polskiej normy dotyczącej obliczania strumieni cieplnych i temperatury powierzchni (PN-EN ISO 10211:2008 [6]).
2.2.4. Sprawdzenie warunku, o którym mowa w §321 ust. 1 i 2 rozporządzenia, należy przeprowadzić według rozdziału 5 i 6 polskiej normy (PN-EN ISO 13788:2003 [5]).
2.2.5. Dopuszcza się kondensację pary wodnej, o której mowa w §321 ust. 2 rozporządzenia, wewnątrz przegrody w okresie zimowym, o ile struktura przegrody umożliwi wyparowanie kondensatu w okresie letnim i nie nastąpi przy tym degradacja materiałów budowlanych przegrody na skutek tej kondensacji”.
Projektowanie ścian zewnętrznych w aspekcie cieplno-wilgotnościowym
Projektowanie ścian zewnętrznych i ich złączy w aspekcie cieplno‑wilgotnościowym polega na przeprowadzeniu obliczeń w zakresie:
- wartości współczynnika przenikania ciepła Uc [W/(m²·K)] według PN-EN ISO 6946:2008 [3],
- czynnika temperaturowego fRsi [-] według PN-EN ISO 13788:2003 [5],
- sprawdzenia ryzyka występowania kondensacji międzywarstwowej według PN-EN ISO 13788:2003 [5].
Do analizy wybrano ściany zewnętrzne dwuwarstwowe (rys.), które są rozwiązaniami konstrukcyjno-materiałowymi często stosowanymi w Polsce.
W tabeli 5 zebrano rozwiązania konstrukcyjno-materiałowe wybranych ścian zewnętrznych oraz przedstawiono wyniki obliczeń współczynnika przenikania ciepła Uc.
Na podstawie przeprowadzonych obliczeń dokonano oceny analizowanych rozwiązań w aspekcie kryterium cieplnego Uc ≤ Uc(maks.) według rozporządzenia [1]. Wyniki analizy przedstawiono w tabeli 6.
Z analizy wynika, że wraz ze zmieniającymi się wartościami Uc(maks.) niektóre rozwiązania konstrukcyjno-materiałowe ścian zewnętrznych nie spełniają podstawowego kryterium dotyczącego ochrony cieplnej. W wielu przypadkach minimalna grubość izolacji cieplnej, spełniająca kryterium cieplne, powinna wynosić 15 cm. Zasadne staje się także stosowanie nowoczesnych materiałów do izolacji cieplnej (tabela 6).
W zakresie ochrony wilgotnościowej analizowanych ścian zewnętrznych i ich złączy przedstawiono w artykule tylko procedurę oceny ryzyka rozwoju pleśni i grzybów pleśniowych na wewnętrznej powierzchni przegrody i określono wartości czynnika temperaturowego fRsi [-].
Sprawdzenie ryzyka rozwoju pleśni i grzybów pleśniowych w miejscu mostka cieplnego przeprowadza się przez porównanie wartości obliczeniowej czynnika temperaturowego fRsi(obl.) w miejscu mostka cieplnego z wartością graniczną (krytyczną) fRsi(kryt.). Jeżeli spełniona jest nierówność fRsi(obl.) ≥ fRsi(kryt.), nie występuje ryzyko rozwoju pleśni i grzybów pleśniowych na wewnętrznej powierzchni przegrody.
Czynnik temperaturowy (w miejscu mostka cieplnego) fRsi(obl.) określa się z wzoru:
gdzie:
θsi,min. – temperatura minimalna na wewnętrznej powierzchni przegrody mostka cieplnego [°C],
θe – temperatura powietrza zewnętrznego [°C],
θi – temperatura powietrza wewnętrznego [°C].
Czynnik temperaturowy krytyczny fRsi(kryt.) według rozporządzenia [1] można określić w sposób:
uproszczony dla ti = 20°C, Φ = 50%, fRsi(kryt.) = 0,72,
dokładny – z uwzględnieniem położenia budynku, parametrów powietrza wewnętrznego.
Wartość graniczna (krytyczna) czynnika temperaturowego, z uwzględnieniem parametrów powietrza wewnętrznego (III klasa wilgotności, ti = 20°C) i zewnętrznego (Toruń), wynosi fRsi(kryt.) = 0,778.
Do przykładowej analizy wybrano trzy mostki cieplne występujące na złączach budowlanych ściany dwuwarstwowej z betonu komórkowego.
Wartości temperatur minimalnych na wewnętrznej powierzchni (w miejscu mostka cieplnego) określono na podstawie obliczeń numerycznych według procedur opisanych w normie PN-EN ISO 10211:2008 [6]. Wyniki obliczeń i analiz zestawiono w tabeli 7.
Na podstawie przedstawionych obliczeń i analiz (tabela 7) można stwierdzić, że w analizowanych mostkach cieplnych nie wystąpi ryzyko rozwoju pleśni i grzybów pleśniowych.
Należy podkreślić, iż ocena cieplna ścian zewnętrznych powinna dotyczyć nie tylko pełnej przegrody, lecz także jej złączy. Niestety zmiany w rozporządzeniu [1] w zakresie ochrony cieplnej nie precyzują wymagań dotyczących maksymalnych wartości strat ciepła przez mostki cieplne występujące w miejscu połączenia przegród zewnętrznych w postaci liniowego współczynnika przenikania ciepła Ψ [W/(m·K)].
Podsumowanie i wnioski
Nowe wartości graniczne współczynnika Uc(maks.) i wskaźnika EP wyznaczają standardy projektowania od 2021 r. w Polsce budynków niskoenergetycznych. Aby wymagania te mogły zostać spełnione, dobór materiałów konstrukcyjnych i izolacyjnych nie powinien być przypadkowy, ale oparty na szczegółowych obliczeniach i analizach. Z tego względu wskazane byłoby opracowanie poradników projektowych oraz prowadzenie szkoleń w na temat:
- projektowania przegród zewnętrznych budynków w świetle nowych wymagań cieplno-wilgotnościowych,
- zastosowania metod numerycznych w projektowaniu cieplno-wilgotnościowym przegród zewnętrznych i ich złączy,
- wytycznych dotyczących projektowania budynków niskoenergetycznych.
Pomocne byłoby również opracowanie katalogu mostków cieplnych oraz rozwiązań konstrukcyjno-materiałowych budynków niskoenergetycznych.
Literatura
- Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2013 r., poz. 926).
- PN-EN ISO 13370:2008, „Cieplne właściwości użytkowe budynków. Wymiana ciepła przez grunt. Metoda obliczania”.
- PN-EN ISO 6946:2008, „Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania”.
- Rozporządzenie Ministra Infrastruktury z dnia 6 listopada 2008 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2008 r. nr 201, poz. 1238).
- PN-EN ISO 13788:2003, „Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej umożliwiająca uniknięcie krytycznej wilgotności powierzchni wewnętrznej kondensacji. Metody obliczania”.
- PN-EN ISO 10211:2008, „Mostki cieplne w budynkach. Strumienie ciepła i temperatury powierzchni. Obliczenia szczegółowe”.
- PN-EN ISO 12524:2003, „Materiały i wyroby budowlane. Właściwości cieplno-wilgotnościowe. Tabelaryczne wartości obliczeniowe”.