Minimalizacja wpływu mostków cieplnych na izolacyjność przegrody
Minimalizacja wpływu mostków cieplnych na izolacyjność przegrody
Examples of minimisation of the influence of thermal bridges on the insulating properties of walls
Podczas projektowania przegrody zewnętrznej należy zminimalizować negatywny wpływ mostków cieplnych na jej izolacyjność. Konieczna jest do tego znajomość wartości parametrów cieplnych węzłów.
Zobacz także
M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
Ultrapur Sp. z o.o. Pianka poliuretanowa a szczelność budynku
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który...
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który określa właściwości izolacyjne materiału. Jednocześnie jest współczynnikiem wysoce niedoskonałym – określa, jak dany materiał może opierać się utracie ciepła poprzez przewodzenie.
Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.
ABSTRAKT |
---|
W artykule przedstawiono charakterystykę mostków cieplnych w świetle obowiązujących przepisów i wymagań. Określono podstawowe parametry cieplne wybranych złączy budowlanych przy zastosowaniu programu komputerowego. Dokonano analizy parametrów wybranych mostków cieplnych pod kątem poprawnego projektowania układów materiałowych w złączach. |
The article presents the characteristics of thermal bridges in view of the provisions and requirements in force. It specifies basic thermal parameters of selected construction joints using a computer program. The article also contains an analysis of parameters of selected thermal bridges against the correct design of material systems in joints. |
Mostki cieplne (termiczne) to miejsca w przegrodzie lub złączu, w których nie jest zachowana jednowymiarowa ciągłość termiczna [1]. Powodują one zwiększony przepływ strumieni cieplnych przez złącze i mają wpływ na bilans energetyczny budynku, co prowadzi do większego zapotrzebowania na paliwo.
Mostki powodują znaczny wzrost obliczeniowej wartości współczynnika przenikania ciepła U [W/(m·K)] w polu 2D, dlatego tak ważne jest ich uwzględnienie w obliczeniach. Ponadto, w związku z obniżeniem temperatury na wewnętrznej powierzchni przegrody, są odpowiedzialne za powstanie zjawiska nazywanego widmem pyłu, polegającego na pokrywaniu się zimniejszych stref pyłem i kurzem [1].
Klasyfikacja i typowe miejsca występowania
Mostki termiczne można podzielić na:
- pierwszego rzędu (płaskie w obrysie przegrody zewnętrznej) – 1D (RYS. 1),
- drugiego rzędu (w miejscu połączenia przegród, w stykach, złączach, narożnikach) – 2D (RYS. 2),
- trzeciego rzędu (przestrzenne mostki cieplne zarówno w samej przegrodzie zewnętrznej, jak i w ewentualnym złączu przestrzennym tej przegrody z dowiązującymi lub przebijającymi ją ścianami lub stropami) – 3D (RYS. 3).
Typowymi przykładami mostków termicznych są:
- spoiny wypełnione zaprawą w ścianach murowanych z elementów drobnowymiarowych,
- słupy i rygle w ścianach,
- żebra w ścianach warstwowych,
- nadproża,
- złącza elementów prefabrykowanych,
- naroża ścian,
- połączenie ściany zewnętrznej z płytą balkonową,
- ościeża okienne.
Podstawowe parametry
Do podstawowych parametrów technicznych mostków cieplnych można zaliczyć:
- liniowy współczynnik przenikania ciepła Ψ [W/(m·K)], określający dodatkowe straty ciepła wynikające z występowania liniowych mostków cieplnych; jego wartość może być określana według wymiarów wewnętrznych (Ψi), zewnętrznych (Ψe) lub całkowitych wewnętrznych – osiowych (Ψoi);
- punktowy współczynnik przenikania ciepła χ [W/K], określający dodatkowe straty ciepła wynikające z występowania punktowych mostków cieplnych;
- min. temp. na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego tmin. [°C] (θsi, min. [°C]);
- czynnik temperaturowy fRsi [-], określany na podstawie temp. min. w miejscu mostka cieplnego.
Mostki cieplne a wymagania prawne
Według Rozporządzenia Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniającego rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (WT 2013) [2], mostki cieplne trzeba uwzględniać w aspekcie cieplno-wilgotnościowym. Należy wykonywać obliczenia związane z:
- kondensacją wilgoci na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego,
- określeniem izolacyjności cieplnej zewnętrznych przegród budowlanych i ich złączy.
Sprawdzenie warunku ochrony wilgotnościowej – ryzyka występowania kondensacji na wewnętrznej powierzchni przegrody – wynika z §321.1. rozporządzenia [2]:
„Na wewnętrznej powierzchni nieprzezroczystej przegrody zewnętrznej nie może występować kondensacja pary wodnej umożliwiająca rozwój grzybów pleśniowych.2. We wnętrzu przegrody, o której mowa w ust. 1, nie może występować narastające w kolejnych latach zawilgocenie spowodowane kondensacją pary wodnej.3. Warunki określone w ust. 1 i 2 uważa się za spełnione, jeśli przegrody odpowiadają wymaganiom określonym w pkt 2.2. załącznika nr 2 do rozporządzenia”.
Warunki spełnienia wymagań dotyczących powierzchniowej kondensacji pary wodnej przedstawiono w załączniku do WT 2013 [2]:
„2.2.1. W celu zachowania warunku, o którym mowa w §321 ust. 1. rozporządzenia, w odniesieniu do przegród zewnętrznych budynków mieszkalnych, zamieszkania zbiorowego, użyteczności publicznej i produkcyjnych, magazynowych i gospodarczych rozwiązania przegród zewnętrznych i ich węzłów konstrukcyjnych powinny charakteryzować się współczynnikiem temperaturowym fRsi o wartości nie mniejszej niż wymagana wartość krytyczna, obliczona zgodnie z polską normą dotyczącą obliczania temperatury powierzchni wewnętrznej koniecznej do uniknięcia krytycznej wilgotności powierzchni i kondensacji międzywarstwowej.
2.2.2. Wymaganą wartość krytyczną współczynnika temperaturowego fRsi w pomieszczeniach ogrzewanych do temperatury co najmniej 20°C w budynkach mieszkalnych, zamieszkania zbiorowego i użyteczności publicznej należy określać według rozdziału 5 polskiej normy, o której mowa w pkt 2.2.1., przy założeniu, że średnia miesięczna wartość wilgotności względnej powietrza wewnętrznego jest równa j = 50%, przy czym dopuszcza się przyjmowanie wymaganej wartości tego współczynnika równej 0,72.
2.2.3. Wartość współczynnika temperaturowego charakteryzującego zastosowane rozwiązanie konstrukcyjno-materiałowe należy obliczać:1) dla przegrody – według polskiej normy (PN-EN ISO 13788:2003 [3]);2) dla mostków cieplnych przy zastosowaniu przestrzennego modelu przegrody – według polskiej normy dotyczącej obliczania strumieni cieplnych i temperatury powierzchni (PN-EN ISO 10211:2008 [4]).
2.2.4. Sprawdzenie warunku, o którym mowa w §321 ust. 1 i 2 rozporządzenia, należy przeprowadzić według rozdziału 5 i 6 polskiej normy (PN-EN ISO 13788:2003 [3]).
2.2.5. Dopuszcza się kondensację pary wodnej, o której mowa w §321 ust. 2 rozporządzenia, wewnątrz przegrody w okresie zimowym, o ile struktura przegrody umożliwi wyparowanie kondensatu w okresie letnim i nie nastąpi przy tym degradacja materiałów budowlanych przegrody na skutek tej kondensacji” [2].
Sprawdzenie kryterium izolacyjności cieplnej zewnętrznych przegród budowlanych i ich złączy polega na wyznaczeniu wartości współczynnika przenikania ciepła UC, która musi być mniejsza niż wartość UCmaks. poszczególnych przegród budowlanych.
Wartości UCmaks. podano w załączniku do WT 2013 [2]. Należy zwrócić uwagę, że nie uwzględniają one wpływu przepływu ciepła w polu 2D i 3D, czyli wpływu mostków cieplnych na straty ciepła przez przegrody.
Na podstawie przeprowadzonych badań własnych opracowano algorytmy obliczeniowe w formie metod inżynierskich, prezentowane w pracach „Efektywność zewnętrznych przegród budowlanych i ich złączy w aspekcie cieplno-wilgotnościowym” [5], „Wpływ liniowych mostków cieplnych na parametry fizykalne ścian zewnętrznych budynku” [6] oraz „Kryteria oceny ścian zewnętrznych” [7].
Zgodnie z Rozporządzenie Ministra Infrastruktury z dnia 6 listopada 2008 r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej [8], aby wyznaczyć miesięczne wartości zapotrzebowania na ciepło do ogrzewania i wentylacji QH,ht, niezbędne jest określenie współczynnika strat ciepła H (sumy współczynnika strat ciepła przez przenikanie Htr – zał. 5, pkt 3.2.3, pkt 6.3 i współczynnika strat ciepła na wentylację – Hve – zał. 5, pkt 3.2.5).
Wpływ mostków cieplnych jest uwzględniany w obliczeniach współczynnika strat ciepła przez przenikanie Htr [W/K] w sposób dokładny i uproszczony.
W praktyce projektowej i wykonawczej budynków niskoenergetycznych pojawiły się także określenia: budynek w standardzie NF40 oraz budynek w standardzie NF15. Dotyczą one energooszczędnych budynków mieszkalnych, w odniesieniu do których Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej [9] uruchamia system dopłat do kredytów na budowę lub zakup. W systemie tym określono wartości graniczne liniowego współczynnika przenikania ciepła Y mostków cieplnych:
- Ψmaks. = 0,20 W/(m·K) – w odniesieniu do płyt balkonowych w budynkach w standardzie NF40,
- Ψmaks. = 0,10 W/(m·K) – w odniesieniu do pozostałych mostków cieplnych w budynkach w standardzie NF40,
- Ψmaks. = 0,01 W/(m·K) – w odniesieniu do mostków cieplnych w budynkach w standardzie NF15.
Przykładowe sposoby minimalizacji wpływu mostków cieplnych
Aby ograniczyć dodatkowe straty ciepła oraz ryzyko obniżenia temperatury na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego, należy odpowiednio projektować układy materiałowe w złączu przegród zewnętrznych budynku.
Należy zwrócić szczególną uwagę na poprawne osadzenie okna w ścianie zewnętrznej budynku (w przekroju przez ościeżnicę, podokiennik i nadproże), połączenie ściany zewnętrznej z płytą balkonową, ściany zewnętrznej ze stropodachem oraz ściany zewnętrznej ze ścianą fundamentową i podłogą na gruncie.
W artykule zostanie przedstawiona szczegółowa analiza parametrów wybranych mostków cieplnych: połączenia ściany zewnętrznej dwuwarstwowej z oknem w przekroju przez ościeżnicę, podokiennik i nadproże oraz połączenia ściany zewnętrznej dwuwarstwowej z płytą balkonową. Analizowano budynek zlokalizowany w III strefie – temp. powietrza zewnętrznego te = –20°C, temp. powietrza wewnętrznego ti = +20°C.
Do obliczeń przyjęto:
- wartości współczynnika przewodzenia ciepła materiałów budowlanych λ [W/(m·K)] – na podstawie danych zamieszczonych w pracach „Praktyczna fizyka cieplna budowli. Szkoła projektowania złączy budowlanych” [1] oraz „Projektowanie przegród zewnętrznych w świetle nowych warunków technicznych dotyczących budynków” [10],
- wartości współczynnika przenikania ciepła UC [W/(m·K)] – zgodnie z normą PN-EN ISO 6946:2008 [11],
- warunki przejmowania ciepła na wewnętrznej i zewnętrznej powierzchni przegrody – zgodnie z normą PN-EN ISO 6946:2008 [11] do obliczenia wielkości strumieni cieplnych oraz zgodnie z normą PN-EN ISO 13788:2003 [3] do obliczania temperatury i czynnika temperaturowego fRsi,
- modelowanie analizowanych złączy – zgodnie z zasadami sformułowanymi w normie PN-EN ISO 10211:2008 [4].
Wpływ stolarki okiennej
W pierwszym przykładzie obliczono wpływ poprawnego osadzenia stolarki okiennej na parametry cieplne złącza połączenia ściany zewnętrznej dwuwarstwowej z oknem w przekroju przez nadproże, ościeżnicę i podokiennik.
W TABELACH 1–3 zestawiono wyniki obliczeń parametrów cieplnych analizowanych złączy w dwóch wariantach: I – brak ocieplenia na ościeżnicy okiennej, II – ocieplenie zachodzi (3 cm) na ościeżnicę. Na RYS. 4 przedstawiono układ warstw materiałowych analizowanej ściany dwuwarstwowej.
Połączenie z płytą balkonową
W drugim przykładzie obliczono wpływ ukształtowania połączenia ściany zewnętrznej dwuwarstwowej z płytą balkonową. Obliczenia przeprowadzono w dwóch wariantach:
- wariant I – płyta balkonowa przebija warstwę izolacji cieplnej (RYS. 5–7, TABELA 4),
- wariant II – połączenie płyty balkonowej ze ścianą zewnętrzną za pomocą łącznika izotermicznego (RYS. 8–10, TABELA 5).
Podsumowanie i wnioski
W pierwszym przykładzie poprawne osadzenie stolarki okiennej w ścianie zewnętrznej dwuwarstwowej (wariant II) powoduje, że straty ciepła przez dane złącze są duże mniejsze, a temperatura na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego jest wyższa niż w wariancie I.
Wymagania programu NFOŚiGW [9] dotyczą maksymalnej wartości współczynnika Ψmaks. [W/(m·K)], co ma pomóc w zmniejszeniu strat ciepła przez złącza przegród. Jednak przy ocenie strat ciepła należy przeanalizować także parametry F (wielkość strumienia cieplnego przepływającego przez złącze) [W] lub L2D (współczynnik sprzężenia cieplnego) [W/(m·K)], odzwierciedlające straty ciepła przez złącze. Analiza wyłącznie współczynnika Y [W/(m·K)] niekiedy nie potwierdza zasadności konkretnego rozwiązania.
Przykładowo w przypadku połączenia ściany zewnętrznej z oknem w przekroju przez nadproże zwiększenie grubości izolacji cieplnej do 18 cm powoduje, że wartość Y = 0,095 [W/(m·K)], a przy gr. 12 cm Ψ = 0,088 [W/(m·K)]. Wynika to z metodyki obliczeń. Warto zauważyć, że analiza wielkości F [W] potwierdza ograniczenie strat ciepła przez złącze (TABELA 1).
W przypadku złącza analizowanego w drugim przykładzie – połączenia ściany zewnętrznej z płytą balkonową – przeanalizowano dwa warianty. Złącze z typowym rozwiązaniem wskutek przebicia izolacji cieplnej płytą balkonową generuje większe straty ciepła niż złącze z zastosowaniem łącznika izotermicznego.
Wariant II powoduje, że na stykach wewnętrznych przegród występują temperatury (t1, t2) wyższe niż w wariancie I (TABELA 4–5). W związku z tym nie występuje ryzyko kondensacji na wewnętrznej powierzchni przegrody.
Literatura
- A. Dylla, „Praktyczna fizyka cieplna budowli. Szkoła projektowania złączy budowlanych”, Wydawnictwo Uczelniane UTP, Bydgoszcz 2009.
- Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2013 r., poz. 926).
- PN-EN ISO 13788:2003, „Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej konieczna do uniknięcia krytycznej wilgotności powierzchni i kondensacja międzywarstwowa. Metody obliczania”.
- PN-EN ISO 10211:2008, „Mostki cieplne w budynkach. Strumienie ciepła i temperatury powierzchni. Obliczenia szczegółowe”.
- K. Pawłowski, „Efektywność zewnętrznych przegród budowlanych i ich złączy w aspekcie cieplno-wilgotnościowym” [rozprawa doktorska], Uniwersytet Technologiczno‑Przyrodniczy w Bydgoszczy.
- K. Pawłowski, „Wpływ liniowych mostków cieplnych na parametry fizykalne ścian zewnętrznych budynku”, „IZOLACJE”, nr 10/2008, s. 30–32.
- K. Pawłowski, „Kryteria oceny ścian zewnętrznych”, „IZOLACJE”, 3/2009, s. 44–47.
- Rozporządzenie Ministra Infrastruktury z dnia 6 listopada 2008 r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej (DzU z 2008 r. nr 201, poz. 1240).
- Wytyczne określające podstawowe wymogi niezbędne do osiągnięcia oczekiwanych standardów energetycznych dla budynków mieszkalnych oraz sposób weryfikacji projektów i sprawdzania wykonanych domów energooszczędnych, strona internetowa: www.nfosigw.gov.pl.
- K. Pawłowski, „Projektowanie przegród zewnętrznych w świetle nowych warunków technicznych dotyczących budynków”, wydanie specjalne miesięcznika IZOLACJE „IZOLACJE prezentują”, nr 2/2013, GRUPA MEDIUM, Warszawa 2013.
- PN-EN ISO 6946:2008, „Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania”.
- K. Józefiak, „Analiza numeryczna wybranych złączy budowlanych w zakresie wymagań wilgotnościowych”, praca magisterska napisana pod kierunkiem dr. inż. K. Pawłowskiego w Katedrze Budownictwa Ogólnego i Fizyki Budowli, Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy, Bydgoszcz 2012.