Izolacje.com.pl

Zaawansowane wyszukiwanie

Minimalizacja wpływu mostków cieplnych na izolacyjność przegrody

Minimalizacja wpływu mostków cieplnych na izolacyjność przegrody
Examples of minimisation of the influence of thermal bridges on the insulating properties of walls

Minimalizacja wpływu mostków cieplnych na izolacyjność przegrody


Examples of minimisation of the influence of thermal bridges on the insulating properties of walls

Podczas projektowania przegrody zewnętrznej należy zminimalizować negatywny wpływ mostków cieplnych na jej izolacyjność. Konieczna jest do tego znajomość wartości parametrów cieplnych węzłów.

Zobacz także

M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?

Czy piana poliuretanowa jest palna? Czy piana poliuretanowa jest palna?

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.

Ultrapur Sp. z o.o. Pianka poliuretanowa a szczelność budynku

Pianka poliuretanowa a szczelność budynku Pianka poliuretanowa a szczelność budynku

Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który...

Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który określa właściwości izolacyjne materiału. Jednocześnie jest współczynnikiem wysoce niedoskonałym – określa, jak dany materiał może opierać się utracie ciepła poprzez przewodzenie.

Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja domu – na czym polega i jak ją zaplanować? Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.

ABSTRAKT

W artykule przedstawiono charakterystykę mostków cieplnych w świetle obowiązujących przepisów i wymagań. Określono podstawowe parametry cieplne wybranych złączy budowlanych przy zastosowaniu programu komputerowego. Dokonano analizy parametrów wybranych mostków cieplnych pod kątem poprawnego projektowania układów materiałowych w złączach.

The article presents the characteristics of thermal bridges in view of the provisions and requirements in force. It specifies basic thermal parameters of selected construction joints using a computer program. The article also contains an analysis of parameters of selected thermal bridges against the correct design of material systems in joints.

Mostki cieplne (termiczne) to miejsca w przegrodzie lub złączu, w których nie jest zachowana jednowymiarowa ciągłość termiczna [1]. Powodują one zwiększony przepływ strumieni cieplnych przez złącze i mają wpływ na bilans energetyczny budynku, co prowadzi do większego zapotrzebowania na paliwo.

Mostki powodują znaczny wzrost obliczeniowej wartości współczynnika przenikania ciepła U [W/(m·K)] w polu 2D, dlatego tak ważne jest ich uwzględnienie w obliczeniach. Ponadto, w związku z obniżeniem temperatury na wewnętrznej powierzchni przegrody, są odpowiedzialne za powstanie zjawiska nazywanego widmem pyłu, polegającego na pokrywaniu się zimniejszych stref pyłem i kurzem [1].

Klasyfikacja i typowe miejsca występowania

Mostki termiczne można podzielić na:

  • pierwszego rzędu (płaskie w obrysie przegrody zewnętrznej) – 1D (RYS. 1),
  • drugiego rzędu (w miejscu połączenia przegród, w stykach, złączach, narożnikach) – 2D (RYS. 2),
  • trzeciego rzędu (przestrzenne mostki cieplne zarówno w samej przegrodzie zewnętrznej, jak i w ewentualnym złączu przestrzennym tej przegrody z dowiązującymi lub przebijającymi ją ścianami lub stropami) – 3D (RYS. 3).

Typowymi przykładami mostków termicznych są:

  • spoiny wypełnione zaprawą w ścianach murowanych z elementów drobnowymiarowych,
  • słupy i rygle w ścianach,
  • żebra w ścianach warstwowych,
  • nadproża,
  • złącza elementów prefabrykowanych,
  • naroża ścian,
  • połączenie ściany zewnętrznej z płytą balkonową,
  • ościeża okienne.

Podstawowe parametry

Do podstawowych parametrów technicznych mostków cieplnych można zaliczyć:

  • liniowy współczynnik przenikania ciepła Ψ [W/(m·K)], określający dodatkowe straty ciepła wynikające z występowania liniowych mostków cieplnych; jego wartość może być określana według wymiarów wewnętrznych (Ψi), zewnętrznych (Ψe) lub całkowitych wewnętrznych – osiowych (Ψoi);
  • punktowy współczynnik przenikania ciepła χ [W/K], określający dodatkowe straty ciepła wynikające z występowania punktowych mostków cieplnych;
  • min. temp. na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego tmin. [°C] (θsi, min. [°C]);
  • czynnik temperaturowy fRsi [-], określany na podstawie temp. min. w miejscu mostka cieplnego.

Mostki cieplne a wymagania prawne

Według Rozporządzenia Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniającego rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (WT 2013) [2], mostki cieplne trzeba uwzględniać w aspekcie cieplno-wilgotnościowym. Należy wykonywać obliczenia związane z:

  • kondensacją wilgoci na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego,
  • określeniem izolacyjności cieplnej zewnętrznych przegród budowlanych i ich złączy.

Sprawdzenie warunku ochrony wilgotnościowej – ryzyka występowania kondensacji na wewnętrznej powierzchni przegrody – wynika z §321.1. rozporządzenia [2]:

„Na wewnętrznej powierzchni nieprzezroczystej przegrody zewnętrznej nie może występować kondensacja pary wodnej umożliwiająca rozwój grzybów pleśniowych.2. We wnętrzu przegrody, o której mowa w ust. 1, nie może występować narastające w kolejnych latach zawilgocenie spowodowane kondensacją pary wodnej.3. Warunki określone w ust. 1 i 2 uważa się za spełnione, jeśli przegrody odpowiadają wymaganiom określonym w pkt 2.2. załącznika nr 2 do rozporządzenia”.

Warunki spełnienia wymagań dotyczących powierzchniowej kondensacji pary wodnej przedstawiono w załączniku do WT 2013 [2]:

„2.2.1. W celu zachowania warunku, o którym mowa w §321 ust. 1. rozporządzenia, w odniesieniu do przegród zewnętrznych budynków mieszkalnych, zamieszkania zbiorowego, użyteczności publicznej i produkcyjnych, magazynowych i gospodarczych rozwiązania przegród zewnętrznych i ich węzłów konstrukcyjnych powinny charakteryzować się współczynnikiem temperaturowym fRsi o wartości nie mniejszej niż wymagana wartość krytyczna, obliczona zgodnie z polską normą dotyczącą obliczania temperatury powierzchni wewnętrznej koniecznej do uniknięcia krytycznej wilgotności powierzchni i kondensacji międzywarstwowej.

2.2.2. Wymaganą wartość krytyczną współczynnika temperaturowego fRsi w pomieszczeniach ogrzewanych do temperatury co najmniej 20°C w budynkach mieszkalnych, zamieszkania zbiorowego i użyteczności publicznej należy określać według rozdziału 5 polskiej normy, o której mowa w pkt 2.2.1., przy założeniu, że średnia miesięczna wartość wilgotności względnej powietrza wewnętrznego jest równa j = 50%, przy czym dopuszcza się przyjmowanie wymaganej wartości tego współczynnika równej 0,72.

2.2.3. Wartość współczynnika temperaturowego charakteryzującego zastosowane rozwiązanie konstrukcyjno-materiałowe należy obliczać:1) dla przegrody – według polskiej normy (PN-EN ISO 13788:2003 [3]);2) dla mostków cieplnych przy zastosowaniu przestrzennego modelu przegrody – według polskiej normy dotyczącej obliczania strumieni cieplnych i temperatury powierzchni (PN-EN ISO 10211:2008 [4]).

2.2.4. Sprawdzenie warunku, o którym mowa w §321 ust. 1 i 2 rozporządzenia, należy przeprowadzić według rozdziału 5 i 6 polskiej normy (PN-EN ISO 13788:2003 [3]).

2.2.5. Dopuszcza się kondensację pary wodnej, o której mowa w §321 ust. 2 rozporządzenia, wewnątrz przegrody w okresie zimowym, o ile struktura przegrody umożliwi wyparowanie kondensatu w okresie letnim i nie nastąpi przy tym degradacja materiałów budowlanych przegrody na skutek tej kondensacji” [2].

Sprawdzenie kryterium izolacyjności cieplnej zewnętrznych przegród budowlanych i ich złączy polega na wyznaczeniu wartości współczynnika przenikania ciepła UC, która musi być mniejsza niż wartość UCmaks. poszczególnych przegród budowlanych.

Wartości UCmaks. podano w załączniku do WT 2013 [2]. Należy zwrócić uwagę, że nie uwzględniają one wpływu przepływu ciepła w polu 2D i 3D, czyli wpływu mostków cieplnych na straty ciepła przez przegrody.

Na podstawie przeprowadzonych badań własnych opracowano algorytmy obliczeniowe w formie metod inżynierskich, prezentowane w pracach „Efektywność zewnętrznych przegród budowlanych i ich złączy w aspekcie cieplno-wilgotnościowym” [5], „Wpływ liniowych mostków cieplnych na parametry fizykalne ścian zewnętrznych budynku” [6] oraz „Kryteria oceny ścian zewnętrznych” [7].

Zgodnie z Rozporządzenie Ministra Infrastruktury z dnia 6 listopada 2008 r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej [8], aby wyznaczyć miesięczne wartości zapotrzebowania na ciepło do ogrzewania i wentylacji QH,ht, niezbędne jest określenie współczynnika strat ciepła H (sumy współczynnika strat ciepła przez przenikanie Htr – zał. 5, pkt 3.2.3, pkt 6.3 i współczynnika strat ciepła na wentylację – Hve – zał. 5, pkt 3.2.5).

Wpływ mostków cieplnych jest uwzględniany w obliczeniach współczynnika strat ciepła przez przenikanie Htr [W/K] w sposób dokładny i uproszczony.

W praktyce projektowej i wykonawczej budynków niskoenergetycznych pojawiły się także określenia: budynek w standardzie NF40 oraz budynek w standardzie NF15. Dotyczą one energooszczędnych budynków mieszkalnych, w odniesieniu do których Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej [9] uruchamia system dopłat do kredytów na budowę lub zakup. W systemie tym określono wartości graniczne liniowego współczynnika przenikania ciepła Y mostków cieplnych:

  • Ψmaks. = 0,20 W/(m·K) – w odniesieniu do płyt balkonowych w budynkach w standardzie NF40,
  • Ψmaks. = 0,10 W/(m·K) – w odniesieniu do pozostałych mostków cieplnych w budynkach w standardzie NF40,
  • Ψmaks. = 0,01 W/(m·K) – w odniesieniu do mostków cieplnych w budynkach w standardzie NF15.

Przykładowe sposoby minimalizacji wpływu mostków cieplnych

Aby ograniczyć dodatkowe straty ciepła oraz ryzyko obniżenia temperatury na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego, należy odpowiednio projektować układy materiałowe w złączu przegród zewnętrznych budynku.

Należy zwrócić szczególną uwagę na poprawne osadzenie okna w ścianie zewnętrznej budynku (w przekroju przez ościeżnicę, podokiennik i nadproże), połączenie ściany zewnętrznej z płytą balkonową, ściany zewnętrznej ze stropodachem oraz ściany zewnętrznej ze ścianą fundamentową i podłogą na gruncie.

W artykule zostanie przedstawiona szczegółowa analiza parametrów wybranych mostków cieplnych: połączenia ściany zewnętrznej dwuwarstwowej z oknem w przekroju przez ościeżnicę, podokiennik i nadproże oraz połączenia ściany zewnętrznej dwuwarstwowej z płytą balkonową. Analizowano budynek zlokalizowany w III strefie – temp. powietrza zewnętrznego te = –20°C, temp. powietrza wewnętrznego ti = +20°C.

Do obliczeń przyjęto:

  • wartości współczynnika przewodzenia ciepła materiałów budowlanych λ [W/(m·K)] – na podstawie danych zamieszczonych w pracach „Praktyczna fizyka cieplna budowli. Szkoła projektowania złączy budowlanych” [1] oraz „Projektowanie przegród zewnętrznych w świetle nowych warunków technicznych dotyczących budynków” [10],
  • wartości współczynnika przenikania ciepła UC [W/(m·K)] – zgodnie z normą PN-EN ISO 6946:2008 [11],
  • warunki przejmowania ciepła na wewnętrznej i zewnętrznej powierzchni przegrody – zgodnie z normą PN-EN ISO 6946:2008 [11] do obliczenia wielkości strumieni cieplnych oraz zgodnie z normą PN-EN ISO 13788:2003 [3] do obliczania temperatury i czynnika temperaturowego fRsi,
  • modelowanie analizowanych złączy – zgodnie z zasadami sformułowanymi w normie PN-EN ISO 10211:2008 [4].

Wpływ stolarki okiennej

W pierwszym przykładzie obliczono wpływ poprawnego osadzenia stolarki okiennej na parametry cieplne złącza połączenia ściany zewnętrznej dwuwarstwowej z oknem w przekroju przez nadproże, ościeżnicę i podokiennik.

W TABELACH 1–3 zestawiono wyniki obliczeń parametrów cieplnych analizowanych złączy w dwóch wariantach: I – brak ocieplenia na ościeżnicy okiennej, II – ocieplenie zachodzi (3 cm) na ościeżnicę. Na RYS. 4 przedstawiono układ warstw materiałowych analizowanej ściany dwuwarstwowej.

Połączenie z płytą balkonową

W drugim przykładzie obliczono wpływ ukształtowania połączenia ściany zewnętrznej dwuwarstwowej z płytą balkonową. Obliczenia przeprowadzono w dwóch wariantach:

  • wariant I – płyta balkonowa przebija warstwę izolacji cieplnej (RYS. 5–7, TABELA 4),
  • wariant II – połączenie płyty balkonowej ze ścianą zewnętrzną za pomocą łącznika izotermicznego (RYS. 8–10, TABELA 5).

Podsumowanie i wnioski

W pierwszym przykładzie poprawne osadzenie stolarki okiennej w ścianie zewnętrznej dwuwarstwowej (wariant II) powoduje, że straty ciepła przez dane złącze są duże mniejsze, a temperatura na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego jest wyższa niż w wariancie I.

Wymagania programu NFOŚiGW [9] dotyczą maksymalnej wartości współczynnika Ψmaks. [W/(m·K)], co ma pomóc w zmniejszeniu strat ciepła przez złącza przegród. Jednak przy ocenie strat ciepła należy przeanalizować także parametry F (wielkość strumienia cieplnego przepływającego przez złącze) [W] lub L2D (współczynnik sprzężenia cieplnego) [W/(m·K)], odzwierciedlające straty ciepła przez złącze. Analiza wyłącznie współczynnika Y [W/(m·K)] niekiedy nie potwierdza zasadności konkretnego rozwiązania.

Przykładowo w przypadku połączenia ściany zewnętrznej z oknem w przekroju przez nadproże zwiększenie grubości izolacji cieplnej do 18 cm powoduje, że wartość Y = 0,095 [W/(m·K)], a przy gr. 12 cm Ψ = 0,088 [W/(m·K)]. Wynika to z metodyki obliczeń. Warto zauważyć, że analiza wielkości F [W] potwierdza ograniczenie strat ciepła przez złącze (TABELA 1).

W przypadku złącza analizowanego w drugim przykładzie – połączenia ściany zewnętrznej z płytą balkonową – przeanalizowano dwa warianty. Złącze z typowym rozwiązaniem wskutek przebicia izolacji cieplnej płytą balkonową generuje większe straty ciepła niż złącze z zastosowaniem łącznika izotermicznego.

Wariant II powoduje, że na stykach wewnętrznych przegród występują temperatury (t1, t2) wyższe niż w wariancie I (TABELA 4–5). W związku z tym nie występuje ryzyko kondensacji na wewnętrznej powierzchni przegrody.

Literatura

  1. A. Dylla, „Praktyczna fizyka cieplna budowli. Szkoła projektowania złączy budowlanych”, Wydawnictwo Uczelniane UTP, Bydgoszcz 2009.
  2. Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2013 r., poz. 926).
  3. PN-EN ISO 13788:2003, „Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej konieczna do uniknięcia krytycznej wilgotności powierzchni i kondensacja międzywarstwowa. Metody obliczania”.
  4. PN-EN ISO 10211:2008, „Mostki cieplne w budynkach. Strumienie ciepła i temperatury powierzchni. Obliczenia szczegółowe”.
  5. K. Pawłowski, „Efektywność zewnętrznych przegród budowlanych i ich złączy w aspekcie cieplno-wilgotnościowym” [rozprawa doktorska], Uniwersytet Technologiczno­‑Przyrodniczy w Bydgoszczy.
  6. K. Pawłowski, „Wpływ liniowych mostków cieplnych na parametry fizykalne ścian zewnętrznych budynku”, „IZOLACJE”, nr 10/2008, s. 30–32.
  7. K. Pawłowski, „Kryteria oceny ścian zewnętrznych”, „IZOLACJE”, 3/2009, s. 44–47.
  8. Rozporządzenie Ministra Infrastruktury z dnia 6 listopada 2008 r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej (DzU z 2008 r. nr 201, poz. 1240).
  9. Wytyczne określające podstawowe wymogi niezbędne do osiągnięcia oczekiwanych standardów energetycznych dla budynków mieszkalnych oraz sposób weryfikacji projektów i sprawdzania wykonanych domów energooszczędnych, strona internetowa: www.nfosigw.gov.pl.
  10. K. Pawłowski, „Projektowanie przegród zewnętrznych w świetle nowych warunków technicznych dotyczących budynków”, wydanie specjalne miesięcznika IZOLACJE „IZOLACJE prezentują”, nr 2/2013, GRUPA MEDIUM, Warszawa 2013.
  11. PN-EN ISO 6946:2008, „Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania”.
  12. K. Józefiak, „Analiza numeryczna wybranych złączy budowlanych w zakresie wymagań wilgotnościowych”, praca magisterska napisana pod kierunkiem dr. inż. K. Pawłowskiego w Katedrze Budownictwa Ogólnego i Fizyki Budowli, Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy, Bydgoszcz 2012.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku

Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku

Wybór rozwiązania materiałowego i kompleksowej technologii naprawy obiektu poddanego ekspertyzie musi wynikać z wcześniej wykonanych badań. Rezultaty badań wstępnych w wielu przypadkach narzucają sposób...

Wybór rozwiązania materiałowego i kompleksowej technologii naprawy obiektu poddanego ekspertyzie musi wynikać z wcześniej wykonanych badań. Rezultaty badań wstępnych w wielu przypadkach narzucają sposób rozwiązania izolacji fundamentów.

Sebastian Malinowski Izolacje akustyczne w biurach

Izolacje akustyczne w biurach Izolacje akustyczne w biurach

Ekonomia pracy wymaga obecnie otwartych, ułatwiających komunikację środowisk biurowych. Odpowiednia akustyka w pomieszczeniach typu open space tworzy atmosferę, która sprzyja zarówno swobodnej wymianie...

Ekonomia pracy wymaga obecnie otwartych, ułatwiających komunikację środowisk biurowych. Odpowiednia akustyka w pomieszczeniach typu open space tworzy atmosferę, która sprzyja zarówno swobodnej wymianie informacji pomiędzy pracownikami, jak i ich koncentracji. Nie każdy jednak wie, że bardzo duży wpływ ma na to konstrukcja sufitu.

dr inż. Beata Anwajler, mgr inż. Anna Piwowar Bioniczny kompozyt komórkowy o właściwościach izolacyjnych

Bioniczny kompozyt komórkowy o właściwościach izolacyjnych Bioniczny kompozyt komórkowy o właściwościach izolacyjnych

Współcześnie uwaga badaczy oraz polityków z całego świata została zwrócona na globalny problem negatywnego oddziaływania energetyki na środowisko naturalne. Szczególnym zagadnieniem stało się zjawisko...

Współcześnie uwaga badaczy oraz polityków z całego świata została zwrócona na globalny problem negatywnego oddziaływania energetyki na środowisko naturalne. Szczególnym zagadnieniem stało się zjawisko zwiększania efektu cieplarnianego, które jest wskazywane jako skutek działalności człowieka. Za nadrzędną przyczynę tego zjawiska uznaje się emisję gazów cieplarnianych (głównie dwutlenku węgla) związaną ze spalaniem paliw kopalnych oraz ubóstwem, które powoduje trudności w zaspakajaniu podstawowych...

Fiberglass Fabrics s.c. Wiele zastosowań siatki z włókna szklanego

Wiele zastosowań siatki z włókna szklanego Wiele zastosowań siatki z włókna szklanego

Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z...

Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z włókna szklanego pozwala na przedłużenie żywotności całego systemu ociepleniowego w danym budynku. W sklepie internetowym FFBudowlany.pl oferujemy szeroki wybór różnych gramatur oraz sposobów aplikacji tego produktu.

dr inż. Krzysztof Pawłowski prof. PBŚ Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7) Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu...

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu jednowymiarowym (1D), dwuwymiarowym (2D) oraz trójwymiarowym (3D).

Redakcja miesięcznika IZOLACJE Fasady wentylowane w budynkach wysokich i wysokościowych

Fasady wentylowane w budynkach wysokich i wysokościowych Fasady wentylowane w budynkach wysokich i wysokościowych

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji...

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji ścian zewnętrznych wykańczanych fasadą wentylowaną. O jakich zjawiskach fizycznych i obciążeniach mowa? W jaki sposób determinują one dobór odpowiedniej izolacji budynku?

inż. Izabela Dziedzic-Polańska Fibrobeton – kompozyt cementowy do zadań specjalnych

Fibrobeton – kompozyt cementowy do zadań specjalnych Fibrobeton – kompozyt cementowy do zadań specjalnych

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość...

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość i wyjątkową długowieczność. Może wytrzymać naprężenia ściskające i rozciągające oraz trudne warunki pogodowe bez uszczerbku dla stabilności architektonicznej. Wytrzymałość betonu na ściskanie w połączeniu z wytrzymałością materiału wzmacniającego na rozciąganie poprawia ogólną jego trwałość. Beton...

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1) Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki...

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki z włókien węglowych, siatki PBO (poliparafenilen-benzobisoxazol), siatki z włóknami szklanymi, aramidowymi, bazaltowymi oraz stalowymi o wysokiej wytrzymałości (UHTSS – Ultra High Tensile Strength Steel). Zbrojenie to jest osadzane w tzw. mineralnej matrycy cementowej, w której dopuszcza się niewielką...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

Paweł Siemieniuk Rodzaje stropów w budynkach jednorodzinnych

Rodzaje stropów w budynkach jednorodzinnych Rodzaje stropów w budynkach jednorodzinnych

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania...

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania domu. Taka decyzja jest praktycznie nieodwracalna, gdyż po wybudowaniu domu trudno ją zmienić.

inż. Izabela Dziedzic-Polańska Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć...

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć emisję gazów cieplarnianych związanych z ogrzewaniem i chłodzeniem. Ponadto, zmniejszenie kosztów ogrzewania i chłodzenia może przyczynić się do zmniejszenia kosztów eksploatacyjnych budynku, co może przełożyć się na zwiększenie jego wartości.

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2)

Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2) Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2)

Artykuł jest kontynuacją tekstu opublikowanego w numerze 2/2023 miesięcznika IZOLACJE.

Artykuł jest kontynuacją tekstu opublikowanego w numerze 2/2023 miesięcznika IZOLACJE.

dr inż. Gerard Brzózka Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Propozycja modyfikacji projektowania rezonansowych układów pochłaniających Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej...

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej szeroką interpretację w polskiej literaturze przedstawili profesorowie Sadowski i Żyszkowski [2, 3]. Pewną uciążliwość tej propozycji stanowiła konieczność korzystania z nomogramów, co determinuje stosunkowo małą dokładność.

Adrian Hołub Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne...

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne jest określenie, co było przyczyną destrukcji. Często jest to nie jeden, a zespół czynników nakładających się na siebie. Ważne jest zbadanie, czy błędy powstały na etapie projektowania, wykonawstwa czy nieprawidłowego użytkowania.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów...

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów całkowicie nieodpornych na wilgoć (np. beton komórkowy), to nie powinno być problemów związanych z bezpieczeństwem budynku, chociaż rozwiązanie z zewnętrzną powłoką uszczelniającą jest o wiele bardziej korzystne.

Farby KABE Nowoczesne systemy ociepleń KABE THERM z tynkami natryskowymi AKORD

Nowoczesne systemy ociepleń KABE THERM z tynkami natryskowymi AKORD Nowoczesne systemy ociepleń KABE THERM  z tynkami natryskowymi AKORD

Bogata oferta systemów ociepleń KABE THERM zawiera kompletny zestaw systemów ociepleń z tynkami do natryskowego (mechanicznego) wykonywania ochronno-dekoracyjnych, cienkowarstwowych wypraw tynkarskich....

Bogata oferta systemów ociepleń KABE THERM zawiera kompletny zestaw systemów ociepleń z tynkami do natryskowego (mechanicznego) wykonywania ochronno-dekoracyjnych, cienkowarstwowych wypraw tynkarskich. Natryskowe tynki cienkowarstwowe AKORD firmy Farby KABE, w stosunku do tynków wykonywanych ręcznie, wyróżniają się łatwą aplikacją, wysoką wydajnością, a przede wszystkim wyjątkowo równomierną i wyraźną fakturą.

dr hab. Inż. Zbigniew Suchorab, Krzysztof Tabiś, mgr inż. Tomasz Rogala, dr hab. Zenon Szczepaniak, dr hab. Waldemar Susek, mgr inż. Magdalena Paśnikowska-Łukaszuk Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki...

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki dla zdrowia użytkowników obiektu. W celu powstrzymania procesu destrukcji konieczne jest wykonanie izolacji wtórnych, a do prawidłowego ich wykonania niezbędna jest znajomość stopnia zawilgocenia murów, a także rozkładu wilgotności na grubości i wysokości ścian.

dr inż. Szymon Swierczyna Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania...

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania należy zweryfikować ich nośność na docisk oraz na ścinanie, a także uwzględnić wpływ sztywności połączeń na stan deformacji konstrukcji.

mgr inż. Monika Hyjek Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości...

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości wytrzymałościowe, a jednocześnie cieplne, akustyczne i ogniowe.

mgr inż. Klaudiusz Borkowicz, mgr inż. Szymon Kasprzyk Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów...

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów budowlanych pożar rozwijał się w wysokim tempie, zagrażając życiu i zdrowiu wielu ludzi.

dr inż. Krzysztof Pawłowski prof. PBŚ Charakterystyka energetyczna budynku (cz. 8)

Charakterystyka energetyczna budynku (cz. 8) Charakterystyka energetyczna budynku (cz. 8)

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów...

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów obudowy budynku (przegrody zewnętrzne i złącza budowlane), danych technicznych instalacji c.o., c.w.u., systemu wentylacji i innych systemów technicznych.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Analiza dokumentacji technicznej prac renowacyjnych (cz. 5) Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku...

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku (jak również farby) jako osobnego elementu, w oderwaniu od konstrukcji ściany oraz rodzaju i właściwości podłoża.

Filip Ryczywolski Pomiar pionowości budynków i budowli

Pomiar pionowości budynków i budowli Pomiar pionowości budynków i budowli

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą...

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą też słupów, kominów, masztów widokowych, latarni morskich oraz różnego rodzaju mostów, wiaduktów, masztów stalowych: radiowych, telewizyjnych, sieci komórkowych czy oświetleniowych. Ogólnie rzecz ujmując, pomiary pionowości stosuje się do obiektów wysmukłych, czyli takich, których wysokość przewyższa...

PPHU POLSTYR Zbigniew Święszek Jak wybrać system ociepleń?

Jak wybrać system ociepleń? Jak wybrać system ociepleń?

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Wybrane dla Ciebie

Pokrycia ceramiczne na każdy dach »

Pokrycia ceramiczne na każdy dach » Pokrycia ceramiczne na każdy dach »

Oblicz izolacyjność cieplną ścian, podłóg i dachów »

Oblicz izolacyjność cieplną ścian, podłóg i dachów » Oblicz izolacyjność cieplną ścian, podłóg i dachów »

Styropian na wiele sposobów »

Styropian na wiele sposobów » Styropian na wiele sposobów »

Wełna kamienna – izolacja bezpieczna od ognia »

Wełna kamienna – izolacja bezpieczna od ognia » Wełna kamienna – izolacja bezpieczna od ognia »

Nowoczesne izolowanie pianą poliuretanową »

Nowoczesne izolowanie pianą poliuretanową » Nowoczesne izolowanie pianą poliuretanową »

Zanim zaczniesz budowę, zrób ekspertyzę »

Zanim zaczniesz budowę, zrób ekspertyzę » Zanim zaczniesz budowę, zrób ekspertyzę »

Panele grzewcze do ścian i sufitów »

Panele grzewcze do ścian i sufitów » Panele grzewcze do ścian i sufitów »

Skuteczna walka z wilgocią w ścianach »

Skuteczna walka z wilgocią w ścianach » Skuteczna walka z wilgocią w ścianach »

Termomodernizacja na krokwiach dachowych »

Termomodernizacja na krokwiach dachowych » Termomodernizacja na krokwiach dachowych »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Uszczelnianie fundamentów »

Uszczelnianie fundamentów » Uszczelnianie fundamentów »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka » Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.