Izolacje.com.pl

Zaawansowane wyszukiwanie

Ściany zewnętrzne – kryteria wyboru rozwiązań materiałowych

Ściany zewnętrzne – kryteria wyboru rozwiązań materiałowych | External walls – criteria for the selection of material solutions

Ściany zewnętrzne – kryteria wyboru rozwiązań materiałowych | External walls – criteria for the selection of material solutions

Ściana zewnętrzna stanowi sztuczną przegrodę między otoczeniem o zmiennej temperaturze i wilgotności a wnętrzem budynku – o określonych parametrach. Aby zapewniła utrzymanie w pomieszczeniu właściwych warunków mikroklimatu wewnętrznego, zgodnych z nowymi wymaganiami cieplno-wilgotnościowymi, do jej wykonania muszą być zastosowane odpowiednie rozwiązania konstrukcyjno­-materiałowe.

Zobacz także

M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?

Czy piana poliuretanowa jest palna? Czy piana poliuretanowa jest palna?

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.

Ultrapur Sp. z o.o. Pianka poliuretanowa a szczelność budynku

Pianka poliuretanowa a szczelność budynku Pianka poliuretanowa a szczelność budynku

Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który...

Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który określa właściwości izolacyjne materiału. Jednocześnie jest współczynnikiem wysoce niedoskonałym – określa, jak dany materiał może opierać się utracie ciepła poprzez przewodzenie.

Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja domu – na czym polega i jak ją zaplanować? Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.

ABSTRAKT

W artykule przedstawiono cechy charakterystyczne warstw materiałowych ścian zewnętrznych murowanych oraz wymagania dotyczące ochrony cieplno-wilgotnościowej. Dokonano analizy ścian jednowarstwowych i wielowarstwowych w zakresie strat ciepła oraz oceny złączy w zakresie ryzyka występowania kondensacji powierzchniowej. Sformułowano także podstawowe kryteria w zakresie kształtowania układów materiałowych ścian zewnętrznych i ich złączy.

The article presents characteristic features of material layers in external brick walls and the requirements concerning hygrothermal protection. It contains an analysis of single- and multi-layer walls within the scope of heat losses and the assessment of expansion joints within the scope of the risk of surface condensation. The article also formulates the basic criteria within the scope of forming material layouts of external walls and expansion joints.

Zasadniczym elementem nowelizacji rozporządzenia w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [1], w zakresie ochrony cieplnej budynków jest zmiana wartości maksymalnych współczynnika przenikania ciepła Uc(maks.).

Zaostrzeniu uległy wymagania cząstkowe w zakresie izolacyjności cieplnej ścian zewnętrznych, dachów, podłóg oraz okien i drzwi. Ponadto nie ma już znaczenia typ przegrody (wielo- czy jednowarstwowa) oraz przeznaczenie obiektu (mieszkalny, użyteczności publicznej, magazynowy, gospodarczy itp.).

Wartości maksymalne współczynnika przenikania ciepła ścian zewnętrznych, zgodnie z załącznikiem 2 do rozporządzenia zmieniającego rozporządzenie w sprawie warunków technicznych [1], zestawiono w TABELI 1.

Według rozporządzenia zmieniającego rozporządzenie w sprawie warunków technicznych [1] dopuszcza się dla budynku produkcyjnego, magazynowego i gospodarczego większe wartości współczynnika U niż określone wartości Uc(maks.) (TABELA 1), jeśli uzasadnia to rachunek efektywności ekonomicznej inwestycji, obejmujący koszt budowy i eksploatacji budynku.

Drugim elementem znowelizowanych przepisów jest sprawdzenie warunku ochrony wilgotnościowej – ryzyka występowania kondensacji na wewnętrznej powierzchni przegrody oraz kondensacji międzywarstwowej. Wynika ono z § 321.1 i załącznika 2 rozporządzenia zmieniającego rozporządzenie w sprawie warunków technicznych [1]:

„Na wewnętrznej powierzchni nieprzezroczystej przegrody zewnętrznej nie może występować kondensacja pary wodnej umożliwiająca rozwój grzybów pleśniowych.2. We wnętrzu przegrody, o której mowa w ust. 1, nie może występować narastające w kolejnych latach zawilgocenie spowodowane kondensacją pary wodnej.3. Warunki określone w ust. 1 i 2 uważa się za spełnione, jeśli przegrody odpowiadają wymaganiom określonym w pkt 2.2 załącznika nr 2 do rozporządzenia”.

Warunki spełnienia wymagań dotyczących powierzchniowej kondensacji pary wodnej przedstawiono w załączniku nr 2 rozporządzenia zmieniającego rozporządzenie w sprawie warunków technicznych [1]:

„2.2.1. W celu zachowania warunku, o którym mowa w § 321 ust. 1 rozporządzenia, w odniesieniu do przegród zewnętrznych budynków mieszkalnych, zamieszkania zbiorowego, użyteczności publicznej i produkcyjnych, magazynowych i gospodarczych rozwiązania przegród zewnętrznych i ich węzłów konstrukcyjnych powinny charakteryzować się współczynnikiem temperaturowym fRsi o wartości nie mniejszej niż wymagana wartość krytyczna, obliczona zgodnie z polską normą dotyczącą obliczania temperatury powierzchni wewnętrznej koniecznej do uniknięcia krytycznej wilgotności powierzchni i kondensacji międzywarstwowej.

2.2.2. Wymaganą wartość krytyczną współczynnika temperaturowego fRsi w pomieszczeniach ogrzewanych do temperatury co najmniej 20°C w budynkach mieszkalnych, zamieszkania zbiorowego i użyteczności publicznej należy określać według rozdziału 5 polskiej normy, o której mowa w pkt 2.2.1, przy założeniu, że średnia miesięczna wartość wilgotności względnej powietrza wewnętrznego jest równa Φ = 50%, przy czym dopuszcza się przyjmowanie wymaganej wartości tego współczynnika równej 0,72.

2.2.3. Wartość współczynnika temperaturowego charakteryzującego zastosowane rozwiązanie konstrukcyjno-materiałowe należy obliczać:1) dla przegrody – według polskiej normy (PN-EN ISO 13788:2003 [2]);2) dla mostków cieplnych przy zastosowaniu przestrzennego modelu przegrody – według polskiej normy dotyczącej obliczania strumieni cieplnych i temperatury powierzchni (PN-EN ISO 10211:2008 [3]).

2.2.4. Sprawdzenie warunku, o którym mowa w § 321 ust. 1 i 2 rozporządzenia, należy przeprowadzić według rozdziału 5 i 6 polskiej normy (PN-EN ISO 13788:2003 [2]).2.2.5. Dopuszcza się kondensację pary wodnej, o której mowa w § 321 ust. 2 rozporządzenia, wewnątrz przegrody w okresie zimowym, o ile struktura przegrody umożliwi wyparowanie kondensatu w okresie letnim i nie nastąpi przy tym degradacja materiałów budowlanych przegrody na skutek tej kondensacji”.

W artykule zostanie przedstawiona szczegółowa analiza wybranych ścian zewnętrznych w aspekcie nowych wymagań cieplno-wilgotnościowych.

Charakterystyka rozwiązań konstrukcyjno­‑materiałowych ścian zewnętrznych

Najczęściej stosowanymi technologiami wznoszenia ścian zewnętrznych budynków w Polsce są: technologia murowana lub drewniana. Przykładowe rozwiązania ścian zewnętrznych murowanych przedstawiono na RYS. 1–4.

Ściany zewnętrzne murowane jednowarstwowe

Są to mury wykonane z pustaków z betonu komórkowego, ceramiki poryzowanej lub keramzytobetonu.

Pustaki z betonu komórkowego produkowane są jako elementy drobnowymiarowe odmian 900, 800, 700 kg/m³ do wykonywania ścian warstwowych oraz odmian 600, 500, 400 kg/m3 do wznoszenia ścian jednowarstwowych. Stosowanie lżejszych odmian jest racjonalnym sposobem poprawienia izolacyjności cieplnej ścian (stosunkowo niska wartość współczynnika przewodzenia ciepła λ = 0,09–0,15 W/(m·K)).

Do wznoszenia murów jednowarstwowych należy stosować „ciepłe zaprawy” lub kleje (zaprawy klejowe). W nowo wznoszonych budynkach należy zwrócić uwagę na odpowiednie wykończenie ścian, tzn. położenie tynku w odpowiednim okresie z uwagi na wysychanie.

Zaleca się zostawić powierzchnię zewnętrzną na okres letni niewykończoną i tynkować dopiero jesienią, gdy ściana częściowo wyschnie. Producenci pustaków z betonu komórkowego oferują odpowiednie (systemowe) wykończenie wewnętrznej i zewnętrznej powierzchni przegrody.

Pustaki z ceramiki poryzowanej produkowane są na podstawie tradycyjnej technologii wypalania elementów murowych z gliny po wprowadzeniu trocin lub pyłu drzewnego.

Podczas wypalania cząsteczki trocin i pyłów ulegają spaleniu i pozostawiają puste przestrzenie (pory), co poprawia parametry cieplne wyrobów ściennych (niska wartość współczynnika λ = 0,09–0,15 W/(m·K)). Pustaki powinny być układane na zaprawie zwykłej (np. cementowo-wapiennej) lub na zaprawie ciepłochronnej (na bazie lekkich kruszyw mineralnych).

Pustaki keramzytobetonowe wykonywane są na bazie granulatu keramzytowego i lepiszcza cementowego. Często oferowane są także pustaki keramzytowo-styropianowe.

Wykończenie zewnętrzne ścian jednowarstwowych powinno być wykonane w postaci cienkowarstwowych tynków akrylowych, silikonowych, silikatowych lub mineralnych [5].

Ściany zewnętrzne murowane warstwowe

Składają się one z:

  • warstwy konstrukcyjnej,
  • warstwy izolacji cieplnej,
  • warstwy pustki powietrznej dobrze wentylowanej (w przypadku ścian szczelinowych),
  • warstwy elewacyjnej (w przypadku ścian trójwarstwowych i szczelinowych).

Najczęściej stosowanymi materiałami do wznoszenia warstwy konstrukcyjnej są:

  • materiały ceramiczne: cegła pełna, cegła kratówka, cegła dziurawka, pustaki ścienne (MAX, SZ, U, z ceramiki pofryzowanej),
  • materiały silikatowe: pełne lub drążone,
  • elementy betonowe, np. pustaki szalunkowe,
  • pustaki z autoklawizowanego betonu komórkowego,
  • elementy murowe z kamienia naturalnego.

Głównym zadaniem tej warstwy jest zdolność przenoszenia obciążeń z wyższych kondygnacji oraz w wyniku parcia wiatru. W przypadku znaczących obciążeń często stosuje się słupy żelbetowe (jako trzpienie).

Materiały do warstwy izolacji cieplnej powinny charakteryzować się niską wartością współczynnika przewodzenia ciepła λ i dużą porowatością. Inne parametry techniczne są zależne od ich pochodzenia.

Do grupy materiałów termoizolacyjnych można zaliczyć:

  • styropian – materiał syntetyczny, sztuczny, produkowany z granulek poliestrowych, które podczas spieniania powiększają swoją objętość ponad 4-krotnie,
  • wełnę mineralną – materiał pochodzenia mineralnego, włóknisty, produkowany z mieszaniny surowców naturalnych (bazaltów, margli) i odpadowych (żużla wielkopiecowego),
  • polistyren ekstradowany – materiał nienasiąkliwy, nieulegający korozji biologicznej,
  • płyty z poliuretanu (PUR-u) i poliizocyjanuratu (PIR-u) – twarde płyty piankowe, które są odporne termicznie i niepalne, o niższych wartościach współczynnika przewodzenia ciepła niż np. wełna mineralna i styropian,
  • aerożele – materiał będący rodzajem sztywnej piany o wyjątkowo małej gęstości (na jego masę składa się w 90–99,8% powietrze, resztę stanowi porowaty materiał tworzący jego strukturę),
  • izolacje próżniowe – płyty z porowatego materiału na bazie krzemionki lub włókien szklanych z mikroporami o rozmiarach 0,0001 mm umieszcza się w szczelnym opakowaniu z nieprzepuszczalnej dla powietrza i pary wodnej folii wielowarstwowej.

Przed wyborem odpowiedniego materiału do izolacji cieplnej należy zwrócić uwagę na następujące właściwości: współczynnik przewodzenia ciepła λ, gęstość objętościową, izolacyjność akustyczną, przepuszczalność pary wodnej (współczynnik oporu dyfuzyjnego μ), wrażliwość na czynniki biologiczne i chemiczne.

Od strony zewnętrznej należy zastosować tynk zewnętrzny (w przypadku ścian dwuwarstwowych) lub warstwę elewacyjną (w przypadku ścian trójwarstwowych i szczelinowych).

Do wykończenia ścian dwuwarstwowych można stosować siatki zbrojące z włókna szklanego, metalowego lub tworzywa sztucznego, które stanowią podkład dla tynków cienkowarstwowych: mineralnych, silikatowych (krzemianowych), silikonowych, silikatowo-silikonowych, polimerowych (np. akrylowych). Ze względu na rodzaj faktury wyróżnia się tynki: gładkie, drapane, ziarniste (baranki), modelowane i mozaikowe [6].

W przypadku ścian trójwarstwowych i szczelinowych warstwa elewacyjna wykonywana jest najczęściej z cegły klinkierowej, bloczków wapienno-piaskowych (silikatowych) oraz płyt z drewna i materiałów drewnopochodnych.

W kształtowaniu układu warstw materiałowych w ścianie szczelinowej należy zaprojektować szczelinę dobrze wentylowaną pomiędzy warstwą izolacji cieplnej a warstwą elewacyjną o odpowiedniej grubości z zapewnieniem swobodnej cyrkulacji powietrza (otworów w warstwie elewacyjnej).

Warstwa elewacyjna powinna być połączona z warstwą konstrukcyjną za pomocą kotew metalowych (łączników mechanicznych) w liczbie od 5 do 6 szt./m² powierzchni ściany.

Ze względu na zmiany temperatur (w okresie letnim do 50°C, a w okresie zimowym do –25°C), w celu uniknięcia występowania zarysowań, wybrzuszeń, kruszenia i odpryskiwania materiału warstwy elewacyjnej zaleca się stosowanie w zewnętrznej warstwie ściany szczelinowej przerwy dylatacyjnej (w odległości 8–12 m w zależności od rodzaju warstwy elewacyjnej).

Należy zwrócić uwagę, że przy analizie parametrów technicznych ścian zewnętrznych należy także uwzględnić charakterystykę cieplno-wilgotnościową złączy budowlanych, takich jak połączenie ściany zewnętrznej:

  • z oknem w przekroju przez ościeżnicę, nadproże i podokiennik,
  • ze stropem w przekroju przez wieniec,
  • ze stropodachem,
  • z podłogą na gruncie.

Analiza wybranych ścian zewnętrznych w zakresie wymagań cieplno-wilgotnościowych

Wykonano obliczenia i analizy w celu określenia wartości współczynnika przenikania ciepła Uc według normy PN-EN ISO 6946:2008 [7] oraz sprawdzenia ryzyka występowania kondensacji na wewnętrznej powierzchni przegrody w miejscu mostka cieplnego i kondensacji międzywarstwowej według normy PN-EN ISO 13788:2003 [2]. Wyniki obliczeń przedstawiono w TABELI 2.

Istotny wpływ na wartość współczynnika przenikania ciepła U przegrody budowlanej ma współczynnik przewodzenia ciepła λ materiału izolacyjnego. W odniesieniu do jednego rodzaju izolacji może się ona wahać w znacznym przedziale w zależności od produktu, co wynika z szybkiego rozwoju rynku materiałów termoizolacyjnych oraz coraz bardziej zaawansowanych technologii produkcyjnych.

Na RYS. 5–7 zilustrowano wpływ wartości współczynnika przewodzenia ciepła λ na wartość współczynnika przenikania ciepła U na podstawie wyników uzyskanych w odniesieniu do ściany dwuwarstwowej, trójwarstwowej i szczelinowej.

W obliczeniach różnicowano grubość warstwy izolacji cieplnej i wartość współczynnika przewodzenia ciepła λ materiału izolacyjnego. Dodatkowo zamieszczono poziomy wymagań dotyczących izolacyjności cieplnej Uc(maks.) według rozporządzenia zmieniającego rozporządzenie w sprawie warunków technicznych [1], z uwzględnieniem daty ich obowiązywania.

Ryzyko rozwoju pleśni i grzybów pleśniowych w miejscu mostka cieplnego sprawdza się przez porównanie wartości obliczeniowej czynnika temperaturowego fRsi.(obl.) w miejscu mostka cieplnego z wartością graniczną (krytyczną) fRsi.(kryt.). Jeżeli spełniona jest nierówność fRsi.(obl.) ≥ fRsi.(kryt.), nie występuje ryzyko rozwoju pleśni i grzybów pleśniowych na wewnętrznej powierzchni przegrody.

Czynnik temperaturowy (w miejscu mostka cieplnego) fRsi.(obl.) określa się według wzoru:

gdzie:

θsi,min. – temperatura minimalna na wewnętrznej powierzchni przegrody mostka cieplnego [°C],

θe – temperatura powietrza zewnętrznego [°C],

θi – temperatura powietrza wewnętrznego [°C].

Czynnik temperaturowy krytyczny fRsi.(kryt.) można określić w sposób:

  • uproszczony dla ti = 20°C, φ= 50%, fRsi.(kryt.) = 0,72,
  • w sposób dokładny z uwzględnieniem położenia budynku, parametrów powietrza wewnętrznego.

Wartość graniczna (krytyczna) czynnika temperaturowego, z uwzględnieniem parametrów powietrza wewnętrznego (III klasa wilgotności, ti = 20°C) i zewnętrznego (Toruń) wynosi fRsi.(kryt.) = 0,778.

Do przykładowej analizy wybrano trzy złącza budowlane (mostki cieplne) ściany dwuwarstwowej z: betonu komórkowego gr. 24 cm i styropian gr. 15 cm.

Wartości temperatur minimalnych na wewnętrznej powierzchni (w miejscu mostka cieplnego) określono na podstawie obliczeń numerycznych według procedur opisanych w normie PN-EN ISO 10211:2008 [3]. Wyniki obliczeń i analiz przedstawiono w TABELI 3.

Natomiast w zakresie sprawdzenia ryzyka kondensacji międzywarstwowej należy przeprowadzić obliczenia i analizy w odniesieniu do 12 mies. w roku z uwzględnieniem szczegółowych parametrów powietrza wewnętrznego pomieszczenia oraz otaczającego powietrza zewnętrznego według normy PN-EN ISO 13788:2003 [2]. Procedura obliczeniowa obejmuje następujące etapy:

  • ustalenie parametrów technicznych materiałów występujących w przegrodzie: współczynnika przewodzenia ciepła λ, współczynnika oporu dyfuzyjnego materiału μ, dyfuzyjnie równoważnej warstwy powietrza sd = μ·d, oporu cieplnego warstw ­przegrody R (jeśli opór cieplny warstwy przegrody przekracza wartość R > 0,25 (m²·K)/W, należy podzielić taką warstwę na pojedyncze mniejsze, aby R < 0,25 (m²·K)/W),
  • przyjęcie warunków brzegowych powietrza wewnętrznego i zewnętrznego: temperatury powietrza wewnętrznego ti w zależności od przeznaczenia pomieszczenia, oporu przejmowania ciepła Rsi = 0,13 (m²·K)/W) dla ram i oszkleń oraz Rsi = 0,25 (m²·K)/W) w pozostałych przypadkach, temperatury powietrza zewnętrznego te jako średnich miesięcznych temperatur dla danej lokalizacji budynku, oporu przejmowania ciepła Rse = 0,04 (m²·K)/W),
  • określenie rozkładu temperatury na stykach warstw materiałowych analizowanej przegrody,
  • określenie wartości ciśnienia pary wodnej nasyconej (psat.) na stykach warstw materiałowych (na podstawie określonych temperatur na stykach warstw materiałowych),
  • określenie wartości rzeczywistego ciśnienia pary wodnej (p) po uwzględnieniu wilgotności powietrza wewnętrznego (określenie Δp w zależności od klasy wilgotności pomieszczenia i te) i wilgotności powietrza zewnętrznego w poszczególnych miesiącach,
  • zestawienie wyników obliczeń w odniesieniu do poszczególnych miesięcy w roku na wykresie (RYS. 8),
  • ocena ryzyka występowania kondensacji międzywarstwowej na podstawie wykresów (psat.) i (p) (RYS. 9–11).

Przecięcie się wykresów (psat.) i (p) (w jednym lub dwóch punktach) wskazuje płaszczyznę, w której występuje ryzyko kondensacji międzywarstwowej.

Podsumowanie i wnioski

Współczynnik przenikania ciepła Uc jest podstawowym parametrem służącym do sprawdzenia kryterium cieplnego Uc ≤ Uc(maks.).

Wraz ze zmieniającymi się wartościami Umaks. niektóre rozwiązania konstrukcyjno-materiałowe ścian zewnętrznych nie spełniają podstawowego kryterium (TABELA 2, RYS. 5–7). Dotyczy to szczególnie ścian jednowarstwowych.

W przypadku ścian warstwowych minimalna grubość izolacji cieplnej (styropianu i wełny mineralnej) wynosi 15–20 cm. Określone wartości Uc wykorzystywane są do dalszych obliczeń w zakresie analizy cieplno-wilgotnościowej przegród i całego budynku (np. współczynnik strat ciepła przez przenikanie Htr, zapotrzebowanie na energię końcową EK i pierwotną EP).

Ocena ścian zewnętrznych powinna dotyczyć nie tylko pełnej przegrody, ale także jej złączy. Niestety obowiązujące przepisy rozporządzenia zmieniającego rozporządzenie w sprawie warunków technicznych [1] w zakresie ochrony cieplnej nie precyzują wymagań dotyczących maksymalnych wartości strat ciepła przez mostki cieplne w postaci liniowego współczynnika przenikania ciepła Ψ.

Bardzo ważnym aspektem jest także sprawdzenie ryzyka kondensacji powierzchniowej (w miejscu mostka cieplnego) i międzywarstwowej.

W artykule przedstawiono tylko wybrane procedury projektowe ścian zewnętrznych w zakresie izolacyjności cieplnej (określenie wartości współczynnika przenikania ciepła Uc oraz ryzyka kondensacji powierzchniowej w miejscu mostka cieplnego (określenie czynnika temperaturowego fRsi).

Podsumowując, należy podkreślić, że przy kształtowaniu układu warstw materiałowych ścian zewnętrznych i ich złączy trzeba uwzględniać kryteria w zakresie: izolacyjności cieplnej, kondensacji powierzchniowej i międzywarstwowej, izolacyjności akustycznej, ochrony przeciwpożarowej oraz nośności i trwałości konstrukcji.

Literatura

  1. Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2013 r., poz. 926).
  2. PN-EN ISO 13788: 2003, „Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej umożliwiająca uniknięcie krytycznej wilgotności powierzchni wewnętrznej kondensacji. Metody obliczania”.
  3. PN-EN ISO 10211:2008, „Mostki cieplne w budynkach. Strumienie ciepła i temperatury powierzchni. Obliczenia szczegółowe”.
  4. K. Józefiak „Metody projektowania ścian zewnętrznych w aspekcie cieplno-wilgotnościowym”, praca dyplomowa inżynierska napisana pod kierunkiem dr. inż. Krzysztofa Pawłowskiego, Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy 2011.
  5. C. Byrdy „Ciepłochronne konstrukcje ścian zewnętrznych budynków mieszkalnych” Wydawnictwo Politechniki Krakowskiej, Kraków 2009.
  6. M. Gaczek, J. Jasiczak, M. Kuiński, M. Siewczyńska, „Izolacyjność termiczna i nośność murowanych ścian zewnętrznych. Rozwiązania i przykłady obliczeń”, Wydawnictwo Politechniki Rzeszowskiej, Rzeszów 2011.
  7. PN-EN ISO 6946:2008, „Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania”.
  8. A. Dylla, „Praktyczna fizyka cieplna budowli. Szkoła projektowania złączy budowlanych,” Wydawnictwo Uczelniane UTP, Bydgoszcz 2009.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

  • darek darek, 04.05.2015r., 05:13:43 Wydaje mi się, że całkiem dobrze sprawdzają się płyty warstwowe jeśli chodzi o izolację. A dodatkowo jeszcze ten parametr ognioodporności, mnie przekonuje.

Powiązane

Sebastian Malinowski Izolacje akustyczne w biurach

Izolacje akustyczne w biurach Izolacje akustyczne w biurach

Ekonomia pracy wymaga obecnie otwartych, ułatwiających komunikację środowisk biurowych. Odpowiednia akustyka w pomieszczeniach typu open space tworzy atmosferę, która sprzyja zarówno swobodnej wymianie...

Ekonomia pracy wymaga obecnie otwartych, ułatwiających komunikację środowisk biurowych. Odpowiednia akustyka w pomieszczeniach typu open space tworzy atmosferę, która sprzyja zarówno swobodnej wymianie informacji pomiędzy pracownikami, jak i ich koncentracji. Nie każdy jednak wie, że bardzo duży wpływ ma na to konstrukcja sufitu.

dr inż. Beata Anwajler, mgr inż. Anna Piwowar Bioniczny kompozyt komórkowy o właściwościach izolacyjnych

Bioniczny kompozyt komórkowy o właściwościach izolacyjnych Bioniczny kompozyt komórkowy o właściwościach izolacyjnych

Współcześnie uwaga badaczy oraz polityków z całego świata została zwrócona na globalny problem negatywnego oddziaływania energetyki na środowisko naturalne. Szczególnym zagadnieniem stało się zjawisko...

Współcześnie uwaga badaczy oraz polityków z całego świata została zwrócona na globalny problem negatywnego oddziaływania energetyki na środowisko naturalne. Szczególnym zagadnieniem stało się zjawisko zwiększania efektu cieplarnianego, które jest wskazywane jako skutek działalności człowieka. Za nadrzędną przyczynę tego zjawiska uznaje się emisję gazów cieplarnianych (głównie dwutlenku węgla) związaną ze spalaniem paliw kopalnych oraz ubóstwem, które powoduje trudności w zaspakajaniu podstawowych...

Fiberglass Fabrics s.c. Wiele zastosowań siatki z włókna szklanego

Wiele zastosowań siatki z włókna szklanego Wiele zastosowań siatki z włókna szklanego

Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z...

Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z włókna szklanego pozwala na przedłużenie żywotności całego systemu ociepleniowego w danym budynku. W sklepie internetowym FFBudowlany.pl oferujemy szeroki wybór różnych gramatur oraz sposobów aplikacji tego produktu.

dr inż. Krzysztof Pawłowski prof. PBŚ Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7) Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu...

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu jednowymiarowym (1D), dwuwymiarowym (2D) oraz trójwymiarowym (3D).

Redakcja miesięcznika IZOLACJE Fasady wentylowane w budynkach wysokich i wysokościowych

Fasady wentylowane w budynkach wysokich i wysokościowych Fasady wentylowane w budynkach wysokich i wysokościowych

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji...

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji ścian zewnętrznych wykańczanych fasadą wentylowaną. O jakich zjawiskach fizycznych i obciążeniach mowa? W jaki sposób determinują one dobór odpowiedniej izolacji budynku?

inż. Izabela Dziedzic-Polańska Fibrobeton – kompozyt cementowy do zadań specjalnych

Fibrobeton – kompozyt cementowy do zadań specjalnych Fibrobeton – kompozyt cementowy do zadań specjalnych

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość...

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość i wyjątkową długowieczność. Może wytrzymać naprężenia ściskające i rozciągające oraz trudne warunki pogodowe bez uszczerbku dla stabilności architektonicznej. Wytrzymałość betonu na ściskanie w połączeniu z wytrzymałością materiału wzmacniającego na rozciąganie poprawia ogólną jego trwałość. Beton...

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1) Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki...

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki z włókien węglowych, siatki PBO (poliparafenilen-benzobisoxazol), siatki z włóknami szklanymi, aramidowymi, bazaltowymi oraz stalowymi o wysokiej wytrzymałości (UHTSS – Ultra High Tensile Strength Steel). Zbrojenie to jest osadzane w tzw. mineralnej matrycy cementowej, w której dopuszcza się niewielką...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

Paweł Siemieniuk Rodzaje stropów w budynkach jednorodzinnych

Rodzaje stropów w budynkach jednorodzinnych Rodzaje stropów w budynkach jednorodzinnych

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania...

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania domu. Taka decyzja jest praktycznie nieodwracalna, gdyż po wybudowaniu domu trudno ją zmienić.

inż. Izabela Dziedzic-Polańska Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć...

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć emisję gazów cieplarnianych związanych z ogrzewaniem i chłodzeniem. Ponadto, zmniejszenie kosztów ogrzewania i chłodzenia może przyczynić się do zmniejszenia kosztów eksploatacyjnych budynku, co może przełożyć się na zwiększenie jego wartości.

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2)

Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2) Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2)

Artykuł jest kontynuacją tekstu opublikowanego w numerze 2/2023 miesięcznika IZOLACJE.

Artykuł jest kontynuacją tekstu opublikowanego w numerze 2/2023 miesięcznika IZOLACJE.

dr inż. Gerard Brzózka Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Propozycja modyfikacji projektowania rezonansowych układów pochłaniających Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej...

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej szeroką interpretację w polskiej literaturze przedstawili profesorowie Sadowski i Żyszkowski [2, 3]. Pewną uciążliwość tej propozycji stanowiła konieczność korzystania z nomogramów, co determinuje stosunkowo małą dokładność.

Adrian Hołub Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne...

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne jest określenie, co było przyczyną destrukcji. Często jest to nie jeden, a zespół czynników nakładających się na siebie. Ważne jest zbadanie, czy błędy powstały na etapie projektowania, wykonawstwa czy nieprawidłowego użytkowania.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów...

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów całkowicie nieodpornych na wilgoć (np. beton komórkowy), to nie powinno być problemów związanych z bezpieczeństwem budynku, chociaż rozwiązanie z zewnętrzną powłoką uszczelniającą jest o wiele bardziej korzystne.

Farby KABE Nowoczesne systemy ociepleń KABE THERM z tynkami natryskowymi AKORD

Nowoczesne systemy ociepleń KABE THERM z tynkami natryskowymi AKORD Nowoczesne systemy ociepleń KABE THERM  z tynkami natryskowymi AKORD

Bogata oferta systemów ociepleń KABE THERM zawiera kompletny zestaw systemów ociepleń z tynkami do natryskowego (mechanicznego) wykonywania ochronno-dekoracyjnych, cienkowarstwowych wypraw tynkarskich....

Bogata oferta systemów ociepleń KABE THERM zawiera kompletny zestaw systemów ociepleń z tynkami do natryskowego (mechanicznego) wykonywania ochronno-dekoracyjnych, cienkowarstwowych wypraw tynkarskich. Natryskowe tynki cienkowarstwowe AKORD firmy Farby KABE, w stosunku do tynków wykonywanych ręcznie, wyróżniają się łatwą aplikacją, wysoką wydajnością, a przede wszystkim wyjątkowo równomierną i wyraźną fakturą.

dr hab. Inż. Zbigniew Suchorab, Krzysztof Tabiś, mgr inż. Tomasz Rogala, dr hab. Zenon Szczepaniak, dr hab. Waldemar Susek, mgr inż. Magdalena Paśnikowska-Łukaszuk Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki...

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki dla zdrowia użytkowników obiektu. W celu powstrzymania procesu destrukcji konieczne jest wykonanie izolacji wtórnych, a do prawidłowego ich wykonania niezbędna jest znajomość stopnia zawilgocenia murów, a także rozkładu wilgotności na grubości i wysokości ścian.

dr inż. Szymon Swierczyna Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania...

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania należy zweryfikować ich nośność na docisk oraz na ścinanie, a także uwzględnić wpływ sztywności połączeń na stan deformacji konstrukcji.

mgr inż. Monika Hyjek Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości...

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości wytrzymałościowe, a jednocześnie cieplne, akustyczne i ogniowe.

mgr inż. Klaudiusz Borkowicz, mgr inż. Szymon Kasprzyk Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów...

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów budowlanych pożar rozwijał się w wysokim tempie, zagrażając życiu i zdrowiu wielu ludzi.

dr inż. Krzysztof Pawłowski prof. PBŚ Charakterystyka energetyczna budynku (cz. 8)

Charakterystyka energetyczna budynku (cz. 8) Charakterystyka energetyczna budynku (cz. 8)

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów...

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów obudowy budynku (przegrody zewnętrzne i złącza budowlane), danych technicznych instalacji c.o., c.w.u., systemu wentylacji i innych systemów technicznych.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Analiza dokumentacji technicznej prac renowacyjnych (cz. 5) Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku...

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku (jak również farby) jako osobnego elementu, w oderwaniu od konstrukcji ściany oraz rodzaju i właściwości podłoża.

Filip Ryczywolski Pomiar pionowości budynków i budowli

Pomiar pionowości budynków i budowli Pomiar pionowości budynków i budowli

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą...

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą też słupów, kominów, masztów widokowych, latarni morskich oraz różnego rodzaju mostów, wiaduktów, masztów stalowych: radiowych, telewizyjnych, sieci komórkowych czy oświetleniowych. Ogólnie rzecz ujmując, pomiary pionowości stosuje się do obiektów wysmukłych, czyli takich, których wysokość przewyższa...

PPHU POLSTYR Zbigniew Święszek Jak wybrać system ociepleń?

Jak wybrać system ociepleń? Jak wybrać system ociepleń?

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Krzysztof Kros Zakrętarki akumulatorowe

Zakrętarki akumulatorowe Zakrętarki akumulatorowe

Wkrętarki akumulatorowe czy wiertarko-wkrętarki od dawna są powszechnie znane i użytkowane zarówno przez amatorów, jak i profesjonalistów. Zakrętarki natomiast są mniej znanym i popularnym typem narzędzia...

Wkrętarki akumulatorowe czy wiertarko-wkrętarki od dawna są powszechnie znane i użytkowane zarówno przez amatorów, jak i profesjonalistów. Zakrętarki natomiast są mniej znanym i popularnym typem narzędzia akumulatorowego, spokrewnionego z wkrętarką czy wiertarką. Jednak w ostatnim czasie zyskują coraz większą popularność, między innymi dzięki łączonym ofertom producentów – zestawy wkrętarka i zakrętarka. Czym zatem jest zakrętarka i do czego służy?

Wybrane dla Ciebie

Pokrycia ceramiczne na każdy dach »

Pokrycia ceramiczne na każdy dach » Pokrycia ceramiczne na każdy dach »

Jak zrobić szczelną hydroizolację? »

Jak zrobić szczelną hydroizolację? » Jak zrobić szczelną hydroizolację? »

Styropian na wiele sposobów »

Styropian na wiele sposobów » Styropian na wiele sposobów »

Wełna kamienna – izolacja bezpieczna od ognia »

Wełna kamienna – izolacja bezpieczna od ognia » Wełna kamienna – izolacja bezpieczna od ognia »

Profile do montażu metodą „lekką-mokrą »

Profile do montażu metodą „lekką-mokrą » Profile do montażu metodą „lekką-mokrą »

Zanim zaczniesz budowę, zrób ekspertyzę »

Zanim zaczniesz budowę, zrób ekspertyzę » Zanim zaczniesz budowę, zrób ekspertyzę »

Panele grzewcze do ścian i sufitów »

Panele grzewcze do ścian i sufitów » Panele grzewcze do ścian i sufitów »

Skuteczna walka z wilgocią w ścianach »

Skuteczna walka z wilgocią w ścianach » Skuteczna walka z wilgocią w ścianach »

Termomodernizacja na krokwiach dachowych »

Termomodernizacja na krokwiach dachowych » Termomodernizacja na krokwiach dachowych »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Uszczelnianie fundamentów »

Uszczelnianie fundamentów » Uszczelnianie fundamentów »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka » Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.