Izolacje.com.pl

Zaawansowane wyszukiwanie

Materiały termoizolacyjne stosowane wewnątrz pomieszczeń

Wpływ wilgotności i temperatury powietrza na wartość współczynnika przewodzenia ciepła

Zobacz wyniki badań laboratoryjnych współczynnika przewodzenia ciepła λ dla materiałów ociepleniowych i jego zależności od wartości wilgotności powietrza, w jakiej były sezonowany
Keim

Zobacz wyniki badań laboratoryjnych współczynnika przewodzenia ciepła λ dla materiałów ociepleniowych i jego zależności od wartości wilgotności powietrza, w jakiej były sezonowany


Keim

Artykuł prezentuje badania laboratoryjne materiałów przeznaczonych do wykonywania termoizolacji od wnętrza pomieszczeń. Głównym ich celem było wyznaczenie współczynnika przewodzenia ciepła λ, w zależności od zmieniających się wartości wilgotności i temperatury powietrza.

Zobacz także

M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?

Czy piana poliuretanowa jest palna? Czy piana poliuretanowa jest palna?

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.

Ultrapur Sp. z o.o. Pianka poliuretanowa a szczelność budynku

Pianka poliuretanowa a szczelność budynku Pianka poliuretanowa a szczelność budynku

Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który...

Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który określa właściwości izolacyjne materiału. Jednocześnie jest współczynnikiem wysoce niedoskonałym – określa, jak dany materiał może opierać się utracie ciepła poprzez przewodzenie.

Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja domu – na czym polega i jak ją zaplanować? Termomodernizacja domu – na czym polega i jak ją zaplanować?

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...

Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.

ABSTRAKT

Głównym celem artykułu jest prezentacja badań laboratoryjnych materiałów przeznaczonych do wykonywania termoizolacji od wnętrza pomieszczeń. Celem badań było wyznaczenie współczynnika przewodzenia ciepła λ, w zależności od zmieniających się wartości wilgotności i temperatury powietrza. Na podstawie badań wyznaczono również krzywe sorpcyjne materiałów, co umożliwia określenie ilości wilgoci, jaką może przyjąć materiał w danych warunkach cieplno-wilgotnościowych. Ponadto zbadane współczynniki przewodzenia ciepła porównano z wartościami deklarowanymi przez producentów materiałów celem oceny zgodności z danymi zawartymi w kartach technicznych.

Thermal insulation materials used indoors. The effect of ambient humidity and temperature on the heat transfer coefficient value

The primary purpose of the article is to present the laboratory tests of materials designed for producing thermal insulation in the interiors. The main target of research was to determine the heat transfer coefficient according to the changing humidity and ambient temperature values. Based on the study, sorption curves have also been determined for materials, so as to specify the quantity of moisture a material can withstand in the given temperature and humidity environment. In addition, the studied heat transfer coefficients were compared to the values declared by manufacturers of materials to assess the conformity with the values in the data sheets.

Materiał, który można stosować do ocieplania ścian od wewnątrz, dostępny jest w postaci płyt samonośnych, niewymagających usztywnień montażowych, a jedynie przyklejenia do powierzchni.

Płyty produkowane są z silikatu wapiennego na bazie mineralnej lub z bardzo lekkich odmian betonu komórkowego. Mają one porowatą strukturę, co umożliwia uzyskanie wysokich właściwości kapilarnych materiału.

Porowatość jest główną zaletą tego rozwiązania. W przypadku wytworzenia się wilgoci pod warstwą ocieplenia nie ma ryzyka wystąpienia zagrzybienia muru i degradacji izolacji.

Płyty dzięki swojej aktywności kapilarnej pochłaniają wilgoć i rozprowadzają ją na całej swojej powierzchni, skąd zostaje ona w bardzo krótkim czasie odparowana.

Materiały termoizolacyjne stosowane od wnętrza budynku są niepalne, bezemisyjne, a dzięki zasadowemu pH materiały na bazie silikatu wapiennego mają dodatkowo właściwości antygrzybiczne. Podobnymi właściwościami charakteryzują się systemowe kleje służące do mocowania płyt do ścian i wzajemnych połączeń między elementami.

Charakterystyka wybranych materiałów termoizolacyjnych

Charakterystyka badanych materiałów wykonana została w oparciu o informacje zamieszczone przez producentów. Zestawienie danych technicznych wykazuje, że dokumenty te różnią się między sobą pod względem jakości i ilości informacji. Dla części materiałów brakuje informacji o wielu istotnych parametrach: pH, sorpcji, absorpcji oraz przepuszczalności pary wodnej (TAB. 1 i TAB. 2).

Materiał A - materiał ten pełni funkcję termoizolacyjną i ma formę białej płyty mineralnej, wykonanej na bazie krzemianu wapnia. Może on służyć jako izolacja wewnętrzna ścian lub konstrukcji kratowych oraz w montażu budynków na sucho.

Płyty z tego materiału mają właściwości wyciszające, są niepalne i łatwe w obróbce.

Materiał ten jest zdolny do wchłaniania i oddawania dużych ilości wilgoci w postaci pary wodnej. Dzięki temu reguluje on klimat w pomieszczeniach oraz zapobiega kondensacji wody i powstawaniu pleśni wewnątrz pomieszczeń.

Materiał B - produkt ten wytwarzany jest z silikatu wapiennego, materiału na bazie mineralnej. Do produkcji używane są surowce naturalne: piasek i wapno.

Ze względu na naturalny skład surowców używanych do produkcji, płyty zostały sklasyfikowane jako materiał budowlany nieszkodliwy dla środowiska naturalnego.

Przekrój płyt w widoku mikroskopowym to szkielet o otwartych porach, dzięki którym materiał jest paroprzepuszczalny (brak wartości w dokumentacji produktu).

W zetknięciu się z wilgotnym środowiskiem płyta wchłania wilgoć, przetransportowuje ją na powierzchnię, z której wilgoć samoczynnie odparowuje.

Wysoki współczynnik pH płyt zapobiega porostowi grzybów i pleśni, co umożliwia stosowanie ich w pomieszczeniach wilgotnych.

Płyty oprócz pełnienia funkcji osuszania ścian, znacznie poprawiają komfort cieplny pomieszczeń.

Płyty są całkowicie niepalne i mają zastosowanie w obiektach o wysokim standardzie przeciwpożarowym.

Materiał C - opisywany materiał ma formę mineralnych płyt izolacyjnych wykonanych z bardzo lekkiej odmiany betonu komórkowego.

Ich gęstość wynosi do 115 kg/m3, przez co charakteryzują się dobrą izolacyjnością termiczną.

Materiał ten może być stosowany jako izolacja termiczna ścian zewnętrznych (również od wewnątrz), stropów i dachów. Z powodu niewielkiej gęstości jest on małoodporny na ściskanie, jednakże jest bardzo łatwy w obróbce i niepalny.

Materiał ma zdolność chłonięcia wilgoci z powietrza i szybkiego jej oddawania, przez co reguluje on mikroklimat pomieszczeń i uniemożliwia rozwój grzybów i pleśni.

Materiał D - produkt jest hydroaktywną, mineralną płytą termoizolacyjną stosowaną do wewnętrznej izolacji termicznej ścian murowanych i betonowych.

Dzięki swojej porowatej strukturze płyta osiąga wysokie parametry termoizolacyjne.

Otwartość dyfuzyjna i aktywność kapilarna struktury materiału umożliwiają transport wody i pary wodnej.

Gromadząca się w okresie zimowym wewnątrz przegrody budowlanej wilgoć jest transportowana na zewnątrz i oddawana latem w postaci pary wodnej.

Płyta w naturalny sposób reguluje wilgotność powietrza w budynku.

Produkt ten wytwarzany jest na bazie mączki kwarcowej i wodorotlenku wapnia.

Produkcja płyt oparta jest tylko na naturalnych surowcach, bez zastosowania włókien.

TABELA 1. Dane techniczne badanych materiałów

TABELA 1. Dane techniczne badanych materiałów

TABELA 2. Wartości średnie sorpcji badanych materiałów w różnych wilgotnościach otoczenia

TABELA 2. Wartości średnie sorpcji badanych materiałów w różnych wilgotnościach otoczenia

Badania laboratoryjne

Celem poniższego opracowania jest przedstawienie wyników badań laboratoryjnych współczynnika przewodzenia ciepła λ i jego zależności od wartości wilgotności powietrza, w jakiej był sezonowany oraz temperatury badanego materiału.

Zależność współczynnika przewodzenia ciepła λ od wilgotności jest o tyle istotna, że badane materiały oprócz funkcji izolacyjnej pełnią rolę płyt klimatycznych. Oznacza to, że okresowo ich wilgotność rośnie w sposób wyraźny, co skutkuje zmianą wartości współczynnika przewodzenia ciepła. Ponadto zbadane wyniki współczynnika λ porównano z wartościami deklarowanymi przez producentów materiałów.

Kolejnym celem niniejszego opracowania było wyznaczenie dla każdego z materiałów krzywych sorpcyjnych, na podstawie badań laboratoryjnych. Badanie to umożliwia określenie ilości wilgoci, jaką może przyjąć materiał w danych warunkach cieplno-wilgotnościowych.

Badania uzupełnione zostały o pomiary wartości współczynnika przenikania ciepła U, wykonane na murach istniejącego obiektu z zamontowanymi płytami izolacyjnymi. Próbki do badań zostały przygotowane przez producentów.

Badanie właściwości sorpcyjnych materiałów

Celem badania jest określenie ilości wilgoci, którą pochłoną dane materiały w określonych warunkach otoczenia. Wykonanie badania polega na umieszczaniu próbek kolejno w ciągu środowisk o stopniowo rosnącej wilgotności względnej i stałej temperaturze (RYS. 1).

Badanie wykonano za pomocą metody eksykatora oraz komory klimatycznej zgodnie z normą [1]. Dla każdego materiału sorpcję określono na sześciu próbkach, po czym obliczono wartości średnie.

Rys. 1. Krzywe sorpcji dla badanych materiałów; rys. archiwum autora

Rys. 1. Krzywe sorpcji dla badanych materiałów; rys. archiwum autora

Badanie współczynnika przewodzenia ciepła

Współczynnik przewodzenia ciepła jest podstawowym parametrem charakteryzującym właściwości materiałów termoizolacyjnych i oznacza się go symbolem λ. Im mniejsza jest wartość współczynnika przewodzenia ciepła danego materiału, tym lepszym jest on izolatorem. Współczynnik ten dla badanych materiałów wyznaczono metodą stacjonarną za pomocą aparatu płytowego oraz metodą niestacjonarną, posługując się sondą liniową.

Badanie za pomocą aparatu płytowego opiera się na metodzie ustalonego strumienia cieplnego, w której strumień ciepła przechodzący przez próbkę materiału powinien mieć stałą wartość, a temperatura próbki w każdym punkcie powinna być ustalona.

Przewodność cieplną badanego materiału określa się mierząc gęstość strumienia cieplnego i różnicę temperatury po obu stronach próbki.

Dużą niedogodnością tych metod jest długi czas trwania badania (kilka do kilkudziesięciu godzin).

W praktyce nie powinno się przeprowadzać pomiarów dla materiałów mokrych, gdyż wilgoć w materiale może ulec przemieszczaniu i zniekształcić wynik pomiaru [2].

Badania wykonano przy użyciu aparatu płytowego Laser Comp FOX 314 (FOT. 1).

Sonda liniowa składa się z nieizolowanego, nieosłoniętego drutu oporowego, który razem z termoelementami umieszczany jest bezpośrednio w badanym materiale [3]. Stosując sondę typu SB 2290-L z urządzeniem pomiarowym ALMEMO®2290-4 [4], uzyskano szybką i nieskomplikowaną możliwość określania przewodności cieplnej materiału izolacyjnego (FOT. 2).

Urządzenie pracuje z gorącą sondą przewodności cieplnej, która zasilana jest stałym strumieniem cieplnym w trakcie testu, aż do uzyskania stanu równowagi pomiędzy energią cieplną wchodzącą i wychodzącą.

Powstała różnica temperatur stanowi miarę dla współczynnika przewodzenia ciepła λ materiału, która jest wyświetlana bezpośrednio po zakończeniu pomiaru [3].

FOT. 1. Próbka umieszczona w komorze pomiarowej instrumentu Laser Comp FOX 314; fot. archiwum autora

FOT. 1. Próbka umieszczona w komorze pomiarowej instrumentu Laser Comp FOX 314; fot. archiwum autora

FOT. 2. Miernik ALMEMO®2290-4 wraz z sondą typu FP A437-1; fot. archiwum autora

FOT. 2. Miernik ALMEMO®2290-4 wraz z sondą typu FP A437-1; fot. archiwum autora

Zależności współczynnika przewodzenia ciepła od temperatury - aparat płytowy

W przypadku badania wpływu temperatury na wartość współczynnika λ płyty przed umieszczeniem w aparacie płytowym suszono do momentu osiągnięcia przez nie stałej masy.

Dla zbadania wartości współczynnika przewodzenia ciepła materiałów w zależności od temperatury przyjęto cztery zakresy temperatur:

  • U1 = 0°C i L1 = 20°C,
  • U2 = 10°C i L2 = 30°C,
  • U3 = 20°C i L3 = 40°C,
  • U4 = 30°C i L4 = 50°C.

Po wykonaniu badań i sporządzeniu na ich podstawie wykresów obrazujących zależność współczynnika przewodności cieplnej od temperatury okazało się, że wzrost temperatury wpływa w sposób liniowy na wzrost wartości współczynnika λ we wszystkich z badanych płyt.

Aby móc wzajemnie porównywać wielkość wpływu temperatury na przewodność cieplną każdego z materiałów, obliczono procentowy wzrost współczynnika λ przy założeniu, że wartością bazową jest przewodność cieplna w średniej temperaturze 10°C. Jako temperaturę odniesienia przyjęto średnią temperaturę wynoszącą 40°C.

Otrzymane wyniki obliczeń pozwoliły zauważyć, że w przypadku materiałów A i B wzrost wartości λ był podobny i wyniósł około 5%, zaś w przypadku materiałów C i D wzrost ten był również zbliżony, lecz wyniósł około 9,3% (RYS. 2).

Tak różne wartości wpływu temperatury na przewodność cieplną w zależności od rodzaju materiału (silikat i lekki beton komórkowy) wynikają z różnej porowatości tych materiałów.

Materiały A i B o porowatości około 91,5% wykazały dwukrotnie mniejszy wzrost wartości współczynnika λ niż materiały C i D o porowatości około 96%.

Zależności współczynnika przewodzenia ciepła od wilgotności powietrza - aparat płytowy

Rys. 2. Wykres zależności współczynnika przewodzenia ciepła od temperatury badania; rys. archiwum autora

Rys. 2. Wykres zależności współczynnika przewodzenia ciepła od temperatury badania; rys. archiwum autora

Rys. 3. Wykres zależności współczynnika przewodzenia ciepła od wilgotności powietrza, w jakich sezonowano materiał; rys. archiwum autora

Rys. 3. Wykres zależności współczynnika przewodzenia ciepła od wilgotności powietrza, w jakich sezonowano materiał; rys. archiwum autora

W celu zbadania zależności wartości współczynnika przewodzenia ciepła od wilgotności, próbki umieszczano w komorze klimatycznej do momentu osiągnięcia przez nie stałej masy, a następnie przekładano do urządzenia Laser Comp FOX 314.

Badanie przeprowadzono dla kolejnych wilgotności: 0, 60, 70, 80 i 90% oraz dla wilgotności laboratoryjnej powietrza 44% (zmierzonej przy użyciu termo­higrometru).

Badania prowadzono przy temperaturze dolnej płyty L = 30°C i górnej płyty U = 10°C.

Badania wykazały nieliniowy charakter wpływu wilgotności powietrza na wzrost wartości współczynnika l w każdym z badanych materiałów, co widoczne jest na RYS. 3.

W przypadku materiałów A, B i D największy wzrost współczynnika λ zaobserwowano przy wilgotności względnej powietrza wynoszącej 70%. Dla materiału C zmiana przewodności cieplnej w tej wilgotności nie jest tak duża, lecz zmiana ta w niższych wilgotnościach jest większa niż w pozostałych materiałach.

Podobnie jak w przypadku badania zależności przewodności cieplnej od temperatury określono procentowy wzrost współczynnika λ dla każdego z materiałów. Wzrost ten dla materiałów A i B wyniósł odpowiednio około 27,5% i 29,3%, natomiast dla materiałów C i D wzrost wyniósł blisko 60%.

Różne wielkości wzrostu współczynnika λ dla danego rodzaju materiału przy tej samej wilgotności wynikają bezpośrednio ze struktury i wielkości porów w danym materiale oraz sorpcyjności poszczególnych materiałów (TAB. 3).

TABELA 3. Wyniki badań zależności współczynnika przewodzenia ciepła od wilgotności powietrza, w jakim sezonowano materiał

TABELA 3. Wyniki badań zależności współczynnika przewodzenia ciepła od wilgotności powietrza, w jakim sezonowano materiał

Porównanie wielkości wpływu temperatury i wilgotności na przewodność cieplną pozwala stwierdzić, iż to wilgotność ma wiodący wpływ na wartość współczynnika λ, gdyż wzrost tego współczynnika spowodowany wzrostem wilgotności jest bardzo duży, kilkukrotnie większy niż wzrost spowodowany zmianą temperatury otoczenia.

Wartość współczynnika przewodzenia ciepła w zależności od metody pomiaru

Różnice wartości współczynnika przewodzenia ciepła wynikające ze sposobu jego pomiaru w przypadku materiałów C i D są minimalne, rzędu kilku tysięcznych. Natomiast w przypadku materiałów A i B różnice te są kilkukrotnie większe. Ma to związek ze sposobem zagłębienia sondy w dany materiał (RYS. 4).

W materiałach C i D sonda została umieszczona bez uprzedniego wykonywania otworu, dzięki czemu między drutem sondy a badanym materiałem nie występowała pustka powietrzna wpływająca na wynik badania.

Rys. 4. Porównanie wyników badań współczynnika przewodzenia ciepła w zależności od metody badania – aparat płytowy, sonda liniowa; rys.: archiwum autora

Rys. 4. Porównanie wyników badań współczynnika przewodzenia ciepła w zależności od metody badania – aparat płytowy, sonda liniowa; rys.: archiwum autora

W przypadku materiałów A i B ze względu na budowę materiałów wbicie sondy pomiarowej było niemożliwe (możliwość uszkodzenia sondy). Przed rozpoczęciem pomiarów w materiałach wykonano otwory, w które wprowadzono drut sondy.

Pomimo dość dobrego dopasowania elementu pomiarowego, pustka powietrzna pomiędzy materiałem a drutem wpłynęła niekorzystnie na wynik.

Zestawienie wyników badań

Pomimo wielokrotnie powtarzanych badań próbek wysuszonych do stałej masy (w celu wyeliminowania wpływu wilgotności na przewodność cieplną), dla żadnego z badanych materiałów nie udało się uzyskać wartości współczynnika λ odpowiadającej wartości podawanej przez producenta.

We wszystkich przypadkach pomierzona wartość współczynnika przewodzenia ciepła λ była wyższa w stosunku do deklarowanej. Najbardziej zbliżoną wartość osiągnięto dla materiału A, w przypadku pozostałych różnice były znacznie większe (TAB. 4, RYS. 5-6).

TABELA 4. Tabela zbiorcza wartości współczynnika przewodzenia ciepła badanych materiałów w zależności od warunków badania

TABELA 4. Tabela zbiorcza wartości współczynnika przewodzenia ciepła badanych materiałów w zależności od warunków badania

Od lewej: termogram ściany z zamontowaną płytą A; termogram ściany z zamontowaną płytą B. Szarym kolorem zaznaczono obszar, gdzie przy panujących warunkach może wystąpić kondensacja pary wodnej; rys. archiwum autora

Od lewej: termogram ściany z zamontowaną płytą A; termogram ściany z zamontowaną płytą B. Szarym kolorem zaznaczono obszar, gdzie przy panujących warunkach może wystąpić kondensacja pary wodnej; rys. archiwum autora

Podsumowanie

W wyniku przeprowadzonych badań stwierdzono:

  • Poszczególne karty techniczne materiałów różnią się między sobą pod względem jakości i ilości informacji.
  • Pomimo stosowania różnych definicji płyt (materiały A i B są określane mianem płyt klimatycznych, a C i D jako hydroaktywne płyty termoizolacyjne), producenci zakładają możliwość zastosowania ich w charakterze izolacji cieplnej.
  • W kartach technicznych nie podano temperatury, w jakiej zostały przeprowadzone badania współczynnika λ. W dużym stopniu uniemożliwia to porównanie wyników autora z wartościami deklarowanymi.
  • Wykresy sorpcji dla wszystkich materiałów są zbieżne z kształtem wykresów spotykanych w literaturze.
  • Przy wzroście podczas badań średniej temperatury próbki z 10°C do 40°C zmierzono wzrost wartości λ o ok. 5% dla materiałów silikatowych i o ok. 9% dla lekkich betonów komórkowych.
  • Wraz ze wzrostem wilgotności próbek (sezonowanych w powietrzu o wilgotności od 0 do 90%) stwierdzono wyraźny wzrost wartości współczynnika λ. Dla materiałów A i B wzrost ten wynosi ok. 28%, dla C i D ok. 60%.
  • Zgodnie z oczekiwaniami największy wpływ na wartość współczynnika przewodzenia ciepła λ miała gęstość materiału. Najniższą wartość współczynnika λ zmierzono dla materiału o najmniejszej gęstości.

Literatura

  1. PN-EN ISO 12571:2002, "Cieplno-wilgotnościowe właściwości materiałów i wyrobów budowlanych. Określanie właściwości sorpcyjnych".
  2. I. Ickiewicz, W. Sarosiek, J. Ickiewicz, "Fizyka budowli, wybrane zagadnienia", Politechnika Białostocka, Białystok 2000.
  3. Instrukcja obsługi instrumentu Laser Comp FOX 314.
  4. Instrukcja obsługi miernika ALMEMO®2290-4.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Galeria zdjęć

Tytuł
przejdź do galerii

Komentarze

Powiązane

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku

Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku Analiza dokumentacji technicznej prac renowacyjnych (cz. 2). Studium przypadku

Wybór rozwiązania materiałowego i kompleksowej technologii naprawy obiektu poddanego ekspertyzie musi wynikać z wcześniej wykonanych badań. Rezultaty badań wstępnych w wielu przypadkach narzucają sposób...

Wybór rozwiązania materiałowego i kompleksowej technologii naprawy obiektu poddanego ekspertyzie musi wynikać z wcześniej wykonanych badań. Rezultaty badań wstępnych w wielu przypadkach narzucają sposób rozwiązania izolacji fundamentów.

Sebastian Malinowski Izolacje akustyczne w biurach

Izolacje akustyczne w biurach Izolacje akustyczne w biurach

Ekonomia pracy wymaga obecnie otwartych, ułatwiających komunikację środowisk biurowych. Odpowiednia akustyka w pomieszczeniach typu open space tworzy atmosferę, która sprzyja zarówno swobodnej wymianie...

Ekonomia pracy wymaga obecnie otwartych, ułatwiających komunikację środowisk biurowych. Odpowiednia akustyka w pomieszczeniach typu open space tworzy atmosferę, która sprzyja zarówno swobodnej wymianie informacji pomiędzy pracownikami, jak i ich koncentracji. Nie każdy jednak wie, że bardzo duży wpływ ma na to konstrukcja sufitu.

dr inż. Beata Anwajler, mgr inż. Anna Piwowar Bioniczny kompozyt komórkowy o właściwościach izolacyjnych

Bioniczny kompozyt komórkowy o właściwościach izolacyjnych Bioniczny kompozyt komórkowy o właściwościach izolacyjnych

Współcześnie uwaga badaczy oraz polityków z całego świata została zwrócona na globalny problem negatywnego oddziaływania energetyki na środowisko naturalne. Szczególnym zagadnieniem stało się zjawisko...

Współcześnie uwaga badaczy oraz polityków z całego świata została zwrócona na globalny problem negatywnego oddziaływania energetyki na środowisko naturalne. Szczególnym zagadnieniem stało się zjawisko zwiększania efektu cieplarnianego, które jest wskazywane jako skutek działalności człowieka. Za nadrzędną przyczynę tego zjawiska uznaje się emisję gazów cieplarnianych (głównie dwutlenku węgla) związaną ze spalaniem paliw kopalnych oraz ubóstwem, które powoduje trudności w zaspakajaniu podstawowych...

Fiberglass Fabrics s.c. Wiele zastosowań siatki z włókna szklanego

Wiele zastosowań siatki z włókna szklanego Wiele zastosowań siatki z włókna szklanego

Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z...

Siatka z włókna szklanego jest wykorzystywana w systemach ociepleniowych jako warstwa zbrojąca tynków zewnętrznych. Ma za zadanie zapobiec ich pękaniu oraz powstawaniu rys podczas użytkowania. Siatka z włókna szklanego pozwala na przedłużenie żywotności całego systemu ociepleniowego w danym budynku. W sklepie internetowym FFBudowlany.pl oferujemy szeroki wybór różnych gramatur oraz sposobów aplikacji tego produktu.

dr inż. Krzysztof Pawłowski prof. PBŚ Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7) Całkowite przenikanie ciepła przez elementy obudowy budynku (cz. 7)

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu...

W celu ustalenia bilansu energetycznego budynku niezbędna jest znajomość określania współczynnika strat ciepła przez przenikanie przez elementy obudowy budynku z uwzględnieniem przepływu ciepła w polu jednowymiarowym (1D), dwuwymiarowym (2D) oraz trójwymiarowym (3D).

Redakcja miesięcznika IZOLACJE Fasady wentylowane w budynkach wysokich i wysokościowych

Fasady wentylowane w budynkach wysokich i wysokościowych Fasady wentylowane w budynkach wysokich i wysokościowych

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji...

Projektowanie obiektów wielopiętrowych wiąże się z większymi wyzwaniami w zakresie ochrony przed ogniem, wiatrem oraz stratami cieplnymi – szczególnie, jeśli pod uwagę weźmiemy popularny typ konstrukcji ścian zewnętrznych wykańczanych fasadą wentylowaną. O jakich zjawiskach fizycznych i obciążeniach mowa? W jaki sposób determinują one dobór odpowiedniej izolacji budynku?

inż. Izabela Dziedzic-Polańska Fibrobeton – kompozyt cementowy do zadań specjalnych

Fibrobeton – kompozyt cementowy do zadań specjalnych Fibrobeton – kompozyt cementowy do zadań specjalnych

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość...

Beton jest najczęściej używanym materiałem budowlanym na świecie i jest stosowany w prawie każdym typie konstrukcji. Beton jest niezbędnym materiałem budowlanym ze względu na swoją trwałość, wytrzymałość i wyjątkową długowieczność. Może wytrzymać naprężenia ściskające i rozciągające oraz trudne warunki pogodowe bez uszczerbku dla stabilności architektonicznej. Wytrzymałość betonu na ściskanie w połączeniu z wytrzymałością materiału wzmacniającego na rozciąganie poprawia ogólną jego trwałość. Beton...

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1) Projektowanie wzmocnień konstrukcji murowych z użyciem systemu FRCM (cz. 1)

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki...

Wzmocnienie systemem FRCM polega na utworzeniu konstrukcji zespolonej: muru lub żelbetu ze wzmocnieniem, czyli kilkumilimetrową warstwą zaprawy z dodatkowym zbrojeniem. Jako zbrojenie stosuje się siatki z włókien węglowych, siatki PBO (poliparafenilen-benzobisoxazol), siatki z włóknami szklanymi, aramidowymi, bazaltowymi oraz stalowymi o wysokiej wytrzymałości (UHTSS – Ultra High Tensile Strength Steel). Zbrojenie to jest osadzane w tzw. mineralnej matrycy cementowej, w której dopuszcza się niewielką...

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji Analiza dokumentacji technicznej prac renowacyjnych (cz.3). Przykłady realizacji

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

W artykule opisano szczegóły poprawnego wykonywania iniekcji w kontekście jakości prac renowacyjnych. Kiedy należy wykonać ocenę przegrody pod kątem możliwości wykonania iniekcji?

Paweł Siemieniuk Rodzaje stropów w budynkach jednorodzinnych

Rodzaje stropów w budynkach jednorodzinnych Rodzaje stropów w budynkach jednorodzinnych

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania...

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania domu. Taka decyzja jest praktycznie nieodwracalna, gdyż po wybudowaniu domu trudno ją zmienić.

inż. Izabela Dziedzic-Polańska Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć...

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć emisję gazów cieplarnianych związanych z ogrzewaniem i chłodzeniem. Ponadto, zmniejszenie kosztów ogrzewania i chłodzenia może przyczynić się do zmniejszenia kosztów eksploatacyjnych budynku, co może przełożyć się na zwiększenie jego wartości.

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2)

Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2) Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2)

Artykuł jest kontynuacją tekstu opublikowanego w numerze 2/2023 miesięcznika IZOLACJE.

Artykuł jest kontynuacją tekstu opublikowanego w numerze 2/2023 miesięcznika IZOLACJE.

dr inż. Gerard Brzózka Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Propozycja modyfikacji projektowania rezonansowych układów pochłaniających Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej...

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej szeroką interpretację w polskiej literaturze przedstawili profesorowie Sadowski i Żyszkowski [2, 3]. Pewną uciążliwość tej propozycji stanowiła konieczność korzystania z nomogramów, co determinuje stosunkowo małą dokładność.

Adrian Hołub Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne...

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne jest określenie, co było przyczyną destrukcji. Często jest to nie jeden, a zespół czynników nakładających się na siebie. Ważne jest zbadanie, czy błędy powstały na etapie projektowania, wykonawstwa czy nieprawidłowego użytkowania.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów...

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów całkowicie nieodpornych na wilgoć (np. beton komórkowy), to nie powinno być problemów związanych z bezpieczeństwem budynku, chociaż rozwiązanie z zewnętrzną powłoką uszczelniającą jest o wiele bardziej korzystne.

Farby KABE Nowoczesne systemy ociepleń KABE THERM z tynkami natryskowymi AKORD

Nowoczesne systemy ociepleń KABE THERM z tynkami natryskowymi AKORD Nowoczesne systemy ociepleń KABE THERM  z tynkami natryskowymi AKORD

Bogata oferta systemów ociepleń KABE THERM zawiera kompletny zestaw systemów ociepleń z tynkami do natryskowego (mechanicznego) wykonywania ochronno-dekoracyjnych, cienkowarstwowych wypraw tynkarskich....

Bogata oferta systemów ociepleń KABE THERM zawiera kompletny zestaw systemów ociepleń z tynkami do natryskowego (mechanicznego) wykonywania ochronno-dekoracyjnych, cienkowarstwowych wypraw tynkarskich. Natryskowe tynki cienkowarstwowe AKORD firmy Farby KABE, w stosunku do tynków wykonywanych ręcznie, wyróżniają się łatwą aplikacją, wysoką wydajnością, a przede wszystkim wyjątkowo równomierną i wyraźną fakturą.

dr hab. Inż. Zbigniew Suchorab, Krzysztof Tabiś, mgr inż. Tomasz Rogala, dr hab. Zenon Szczepaniak, dr hab. Waldemar Susek, mgr inż. Magdalena Paśnikowska-Łukaszuk Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej Bezinwazyjne pomiary wilgotności materiałów budowlanych za pomocą technik reflektometrycznej i mikrofalowej

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki...

Badania zawilgocenia murów stanowią ważny element oceny stanu technicznego obiektów budowlanych. W wyniku nadmiernego zawilgocenia następuje destrukcja murów, ale również tworzą się niekorzystne warunki dla zdrowia użytkowników obiektu. W celu powstrzymania procesu destrukcji konieczne jest wykonanie izolacji wtórnych, a do prawidłowego ich wykonania niezbędna jest znajomość stopnia zawilgocenia murów, a także rozkładu wilgotności na grubości i wysokości ścian.

dr inż. Szymon Swierczyna Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące Badanie nośności i sztywności ścinanych połączeń na wkręty samowiercące

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania...

Wkręty samowiercące stosuje się w konstrukcjach stalowych m.in. do zakładkowego łączenia prętów kratownic z kształtowników giętych. W tym przypadku łączniki są obciążone siłą poprzeczną i podczas projektowania należy zweryfikować ich nośność na docisk oraz na ścinanie, a także uwzględnić wpływ sztywności połączeń na stan deformacji konstrukcji.

mgr inż. Monika Hyjek Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych Dobór prawidłowych rozwiązań ścian zewnętrznych na granicy stref pożarowych

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości...

Przy projektowaniu ścian zewnętrznych należy wziąć pod uwagę wiele aspektów: wymagania techniczne, obowiązujące przepisy oraz wymogi narzucone przez ubezpieczyciela czy inwestora. Należy uwzględnić właściwości wytrzymałościowe, a jednocześnie cieplne, akustyczne i ogniowe.

mgr inż. Klaudiusz Borkowicz, mgr inż. Szymon Kasprzyk Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów...

W ostatniej dekadzie coraz większą uwagę zwraca się na bezpieczeństwo pożarowe budynków. Przyczyniło się do tego m.in. kilka incydentów związanych z pożarami, gdzie przez użycie nieodpowiednich materiałów budowlanych pożar rozwijał się w wysokim tempie, zagrażając życiu i zdrowiu wielu ludzi.

dr inż. Krzysztof Pawłowski prof. PBŚ Charakterystyka energetyczna budynku (cz. 8)

Charakterystyka energetyczna budynku (cz. 8) Charakterystyka energetyczna budynku (cz. 8)

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów...

Opracowanie świadectwa charakterystyki energetycznej budynku lub części budynku wymaga znajomości wielu zagadnień, m.in. lokalizacji budynku, parametrów geometrycznych budynku, parametrów cieplnych elementów obudowy budynku (przegrody zewnętrzne i złącza budowlane), danych technicznych instalacji c.o., c.w.u., systemu wentylacji i innych systemów technicznych.

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Analiza dokumentacji technicznej prac renowacyjnych (cz. 5) Analiza dokumentacji technicznej prac renowacyjnych (cz. 5)

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku...

Do prac renowacyjnych zalicza się także tzw. środki flankujące. Będą to przede wszystkim różnego rodzaju tynki specjalistyczne i wymalowania (farby), a także tynki tradycyjne. Błędem jest traktowanie tynku (jak również farby) jako osobnego elementu, w oderwaniu od konstrukcji ściany oraz rodzaju i właściwości podłoża.

Filip Ryczywolski Pomiar pionowości budynków i budowli

Pomiar pionowości budynków i budowli Pomiar pionowości budynków i budowli

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą...

Odchylenia, przemieszczenia, skręcenia i odkształcenia to niestety codzienny widok na wielu inwestycjach – również tych nowych. Poza kontrolą ścian czy szachtów w budynkach, badania pionowości dotyczą też słupów, kominów, masztów widokowych, latarni morskich oraz różnego rodzaju mostów, wiaduktów, masztów stalowych: radiowych, telewizyjnych, sieci komórkowych czy oświetleniowych. Ogólnie rzecz ujmując, pomiary pionowości stosuje się do obiektów wysmukłych, czyli takich, których wysokość przewyższa...

PPHU POLSTYR Zbigniew Święszek Jak wybrać system ociepleń?

Jak wybrać system ociepleń? Jak wybrać system ociepleń?

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Prawidłowo zaprojektowane i wykonane ocieplenie przegród w budynku pozwala zmniejszyć zużycie energii, a co za tym idzie obniżyć koszty eksploatacji i domowe rachunki.

Wybrane dla Ciebie

Pokrycia ceramiczne na każdy dach »

Pokrycia ceramiczne na każdy dach » Pokrycia ceramiczne na każdy dach »

Oblicz izolacyjność cieplną ścian, podłóg i dachów »

Oblicz izolacyjność cieplną ścian, podłóg i dachów » Oblicz izolacyjność cieplną ścian, podłóg i dachów »

Styropian na wiele sposobów »

Styropian na wiele sposobów » Styropian na wiele sposobów »

Wełna kamienna – izolacja bezpieczna od ognia »

Wełna kamienna – izolacja bezpieczna od ognia » Wełna kamienna – izolacja bezpieczna od ognia »

Nowoczesne izolowanie pianą poliuretanową »

Nowoczesne izolowanie pianą poliuretanową » Nowoczesne izolowanie pianą poliuretanową »

Zanim zaczniesz budowę, zrób ekspertyzę »

Zanim zaczniesz budowę, zrób ekspertyzę » Zanim zaczniesz budowę, zrób ekspertyzę »

Panele grzewcze do ścian i sufitów »

Panele grzewcze do ścian i sufitów » Panele grzewcze do ścian i sufitów »

Płynne membrany do uszczelniania dachów »

Płynne membrany do uszczelniania dachów » Płynne membrany do uszczelniania dachów »

Termomodernizacja na krokwiach dachowych »

Termomodernizacja na krokwiach dachowych » Termomodernizacja na krokwiach dachowych »

Podpowiadamy, jak wybrać system ociepleń

Podpowiadamy, jak wybrać system ociepleń Podpowiadamy, jak wybrać system ociepleń

Uszczelnianie fundamentów »

Uszczelnianie fundamentów » Uszczelnianie fundamentów »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka » Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.