Modernizacja poddaszy użytkowych
Modernization of habitable attics
Jak modernizować poddasza na potrzeby mieszkalne?
Fot. Siniat
Poddasze jest szczególną częścią budynku, w której kumulują się wszystkie wymagania dotyczące obiektów budowlanych.
Zobacz także
M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
Ultrapur Sp. z o.o. Pianka poliuretanowa a szczelność budynku
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który...
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który określa właściwości izolacyjne materiału. Jednocześnie jest współczynnikiem wysoce niedoskonałym – określa, jak dany materiał może opierać się utracie ciepła poprzez przewodzenie.
Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.
O czym przeczytasz w artykule? |
Abstrakt |
---|---|
|
Przedmiotem artykułu są poddasza i ich modernizowanie na potrzeby mieszkalne. Autorzy omawiają wymagania, jakim musi sprostać poddasze, by mogło odpowiadać funkcji mieszkalnej. Na początek przedstawiono wymagania fizykalne wobec tego typu obiektów dotyczące przede wszystkim ochrony cieplnej i szczelności powietrznej. Następnie omówiono zasady prawidłowego wydzielenia przestrzeni ogrzewanej, projektowanie układów materiałowych dachu wraz z ograniczeniem liniowych strat ciepła. Przeanalizowano udział mostków cieplnych i szczelności powietrznej poddasza w stratach ciepła. Modernization of habitable atticsThe subject of the article are attics and their modernization for residential purposes. The authors discuss requirements that an attic must meet in order to have a residential function. In the beginning, physical requirements for this type of object are presented, mainly concerning thermal protection and airtightness. Afterward, the principles of proper separation of heated space, design of roof material systems with limitations of linear heat losses are discussed. The share of thermal bridges and airtightness of the attic in heat losses were analyzed. |
Wprowadzenie funkcji mieszkalnej jest możliwe, jeżeli spełnione są wymagania:
- bezpieczeństwa konstrukcji (odpowiednia nośność stropu zapewniająca przeniesienie zwiększonych obciążeń użytkowych, odpowiednia nośność elementów konstrukcyjnych dachu umożliwiająca przeniesienie obciążeń dodatkowych warstw izolacji, zabezpieczeń przeciwwilgociowych i wykończenia),
- bezpieczeństwa użytkowania (w tym wysokości pomieszczeń),
- ochrony przed hałasem i bezpieczeństwa pożarowego,
- fizykalne w zakresie właściwej izolacyjności cieplnej oraz uniknięcia zagrożenia w wyniku występowania wilgoci w elementach budowlanych lub na ich powierzchniach i niekontrolowanej infiltracji powietrza zewnętrznego.
Wymagania fizykalne
Podstawowe wymagania ochrony cieplnej są zdefiniowane w warunkach technicznych [1]. Jednocześnie w praktyce projektowej i wykonawczej funkcjonują dwa dodatkowe standardy (NF40 i NF15) jako pozostałość po zamkniętym w 2015 r. programie priorytetowym Poprawa efektywności energetycznej [2]. Zestawienie wymagań dla zdefiniowanych standardów przedstawiono w TAB. 1.
Co da się zauważyć, w warunkach technicznych nie sprecyzowano wymagań cieplnych dotyczących mostków termicznych. Zdefiniowano natomiast ogólne wymaganie ochrony wilgotnościowej - dotyczące ryzyka występowania kondensacji na wewnętrznej powierzchni przegrody.
Czytaj również: Prawidłowa izolacja poddasza - jak wykorzystać wełnę mineralną? >>
Wg rozporządzenia [1] na wewnętrznej powierzchni nieprzezroczystej przegrody zewnętrznej nie może występować kondensacja pary wodnej umożliwiająca rozwój grzybów pleśniowych, co w praktyce oznacza, że w odniesieniu do przegród zewnętrznych budynków mieszkalnych, zamieszkania zbiorowego, użyteczności publicznej i produkcyjnych, magazynowych i gospodarczych rozwiązania przegród zewnętrznych i ich węzłów konstrukcyjnych powinny charakteryzować się współczynnikiem temperaturowym ƒRsi o wartości nie mniejszej niż wymagana wartość krytyczna, obliczona zgodnie z polską normą (PN-EN ISO 13788:2003 [3]) dotyczącą obliczania temperatury powierzchni wewnętrznej koniecznej do uniknięcia krytycznej wilgotności powierzchni i kondensacji międzywarstwowej. Wymaganą wartość krytyczną współczynnika temperaturowego ƒRsi w pomieszczeniach ogrzewanych do temperatury co najmniej 20°C należy określać według rozdziału 5 PN-EN ISO 13788:2003 [3], przy założeniu, że średnia miesięczna wartość wilgotności względnej powietrza wewnętrznego jest równa φ = 50%, przy czym dopuszcza się przyjmowanie wymaganej wartości tego współczynnika równej 0,72.
Wartość współczynnika temperaturowego charakteryzującego zastosowane rozwiązanie konstrukcyjno-materiałowe należy obliczać:
- dla przegrody - według polskiej normy (PN-EN ISO 13788:2003 [3]);
- dla mostków cieplnych przy zastosowaniu przestrzennego modelu przegrody - według polskiej normy dotyczącej obliczania strumieni cieplnych i temperatury powierzchni (PN-EN ISO 10211:2008 [5]).
Sprawdzenie warunku uniknięcia kondensacji wewnętrznej, należy przeprowadzić według rozdziałów 5 i 6 polskiej normy (PN-EN ISO 13788:2003 [3]).
Przepisy dopuszczają kondensację pary wodnej wewnątrz przegrody w okresie zimowym, o ile struktura przegrody umożliwi wyparowanie kondensatu w okresie letnim i nie nastąpi przy tym degradacja materiałów budowlanych przegrody na skutek tej kondensacji. Jednak w przypadku materiałów wrażliwych na wilgoć, do których należy drewno i materiały drewnopochodne, takie zjawisko należy wykluczyć.
Zgodnie z warunkami technicznymi zalecane jest, by po zakończeniu budowy budynek mieszkalny, zamieszkania zbiorowego, użyteczności publicznej i produkcyjny został poddany próbie szczelności. Dla standardu energooszczędnego i pasywnego jest ona obligatoryjna. Wartości wskaźnika krotności wymiany powietrza zestawiono w TAB 2.
Badanie szczelności jest wykonywane przed wykończeniem finalnym. W przypadku konstrukcji szkieletowych (w tym również dachu) – po ułożeniu paroizolacji i rusztu pod podsufitkę. Z uwagi na łączenie folii technikami klejenia w próbie szczelności stosuje się tylko nadciśnienie [6].
Wydzielenie przestrzeni ogrzewanej
Wydzielenie przestrzeni ogrzewanej jest jednym z pierwszych działań w procesie modernizacji poddasza. W tym celu należy jednoznacznie wskazać kubatury ogrzewane i zdefiniować wymagane temperatury. Wskazane jest, aby ze względu na znikomą izolacyjność termiczną nieocieplonego dachu wszystkie przegrody wydzielające przestrzeń ogrzewaną (stropy na jętkach, ścianki kolankowe) spełniały wymagania dla przegród zewnętrznych (RYS. 1-3 i RYS. 4-6).
RYS. 1-3. Izolowanie termiczne przestrzeni ogrzewanych na poddaszu - wydzielenie przestrzeni ogrzewanej stropem na jętkach: rozwiązanie niepoprawne (1), rozwiązania poprawne (2-3). Objaśnienia: 1 - strop na jętkach, 2 - ocieplenie między krokwiami, θi - przestrzenie ogrzewane, θu - przestrzenie nieogrzewane; rys.: M. Wesołowska, K. Pawłowski i P. Rożek
RYS. 4-6. Izolowanie termiczne przestrzeni ogrzewanych na poddaszu - wydzielenie przestrzeni ogrzewanej stropem na jętkach i ściankami kolankowymi: rozwiązanie niepoprawne (4), rozwiązania poprawne (5-6). Objaśnienia: 1 - strop na jętkach, 2 - ocieplenie między krokwiami, 3 - ścianka kolankowa, θi - przestrzenie ogrzewane, θu - przestrzenie nieogrzewane; rys.: M. Wesołowska, K. Pawłowski i P. Rożek
W powstałych nieogrzewanych przestrzeniach należy zapewnić wentylację. Izolowanie dachu nad nieogrzewanymi przestrzeniami jest dodatkowym zabiegiem poprawiającym komfort cieplny w pomieszczeniach poddasza zarówno w okresie zimowym, jak i letnim.
Projektowanie układów materiałowych
Stropodach drewniany to złożona konstrukcja składająca się z kilku warstw. Współtworzą one kompatybilny system chroniący przed utratą ciepła zimą i nadmiernym nagrzewaniem latem. Przede wszystkim jednak stropodach stanowi zabezpieczenie przed szkodliwym wpływem warunków atmosferycznych, takich jak deszcz i wiatr.
Do ocieplania dachów drewnianych wg [7-8] najczęściej stosowane są następujące materiały termoizolacyjne: płyty drzewne, płyty z wełny owczej, płyty z wełny mineralnej, pianka poliuretanowa (PUR/PIR), płyty korkowe.
Z punktu widzenia zagadnień cieplno-wilgotnościowych istotne znaczenie ma określenie grubości izolacji cieplnej i odpowiednie jej usytuowanie oraz zabezpieczenie przed ryzykiem występowania kondensacji powierzchniowej i międzywarstwowej. Grubość materiałów termoizolacyjnych w zależności od wymaganej wartości współczynnika przenikania ciepła U przedstawiono w TAB. 3.
Rozwiązania konstrukcyjno-materiałowe stropodachów drewnianych różnią się od siebie sposobem ułożenia warstwy izolacji termicznej oraz sposobem wentylowania. Występuje kilka możliwości mocowania termoizolacji (RYS. 7, RYS. 8 i RYS. 9):
- między krokwiami,
- między krokwiami i nad lub pod nimi,
- nad krokwiami.
RYS. 7. Układy warstw materiałowych stropodachów drewnianych - izolacja cieplna między krokwiami. Objaśnienia: 1 - dachówka ceramiczna, 2 - łata, 3 - kontrłata, 4 - szczelina dobrze wentylowana, 5 - folia wysokoparoprzepuszczalna, 6 - krokiew, 7 - izolacja cieplna (wełna mineralna), 8 - folia paroizolacyjna, 9 - płyta gipsowo‑kartonowa; rys.: [9]
RYS. 8. Układy warstw materiałowych stropodachów drewnianych - izolacja cieplna między i pod krokwiami. Objaśnienia: 1 - dachówka ceramiczna, 2 - łata, 3 - kontrłata, 4 - szczelina dobrze wentylowana, 5 - folia wysokoparoprzepuszczalna, 6 - krokiew, 7 - izolacja cieplna (wełna mineralna), 8 - dodatkowa warstwa izolacji cieplnej (wełna mineralna), 9 - folia paroizolacyjna, 10 - płyta gipsowo‑kartonowa; rys.: [9]
RYS. 9. Układy warstw materiałowych stropodachów drewnianych - izolacja cieplna nad krokwiami. Objaśnienia: 1 - dachówka ceramiczna, 2 - łata, 3 - kontrłata lub deskowanie, 4 - szczelina dobrze wentylowana, 5 - folia, 6 - izolacja cieplna (płyty z pianki poliuretanowej), 7 - folia paroizolacyjna, 8 - deskowanie, 9 - krokiew; rys.: [9]
W dachach z poddaszem ogrzewanym ocieplenie jest najczęściej układane między i pod krokwiami. Jego grubość zależna jest od wysokości krokwi i wykonywane jest z płyt, mat lub w postaci luźnego materiału wdmuchiwanego.
Aby materiały termoizolacyjne spełniały swoje zadania prawidłowo, muszą być odpowiednio zabezpieczone przed działaniem wilgoci. Zawilgocony materiał izolacyjny jest nieskuteczny, co łączy się ze stratami ciepła. Zabezpieczenia przeciwwilgociowe stanowią:
- właściwe pokrycie dachowe na odpowiednim poszyciu,
- warstwa wstępnego krycia, której rozwiązanie jest zależne od występującego poszycia,
- wentylacja połaci dachowej,
- paroizolacja, ułożona po wewnętrznej stronie izolacji termicznej.
Warstwę wstępnego krycia może stanowić:
- Papa mocowana mechanicznie na pełnym poszyciu (z desek, sklejki, płyty OSB). Jej najważniejszą funkcją jest ochrona termoizolacji i konstrukcji dachu przed wilgocią z zewnątrz. Para wodna z wnętrza przegrody jest odprowadzana przez dobrze wentylowaną warstwę powietrza powstałą z odsunięcia materiału termoizolacyjnego od poszycia na minimum 2,5 cm.
- Membrana dachowa rozpięta na krokwiach i mocowana kontrłatami. Najważniejszą funkcją membran dachowych jest ochrona termoizolacji i konstrukcji dachu przed wilgocią z zewnątrz, a także odprowadzenie jej z ocieplenia i więźby. Membrana dachowa jest materiałem składającym się z trzech warstw: głównej warstwy funkcyjnej, którą jest "film funkcyjny" (przepuszczający cząsteczki pary wodnej) oraz dwóch warstw włóknin zewnętrznych (najczęściej wykonanych z polipropylenu) chroniących "film" przed uszkodzeniem.
Parametrem określającym paroprzepuszczalność membrany dachowej jest Sd - dyfuzyjnie równoważna grubość warstwy powietrza. Cecha ta decyduje o podziale membran na dwie grupy:
- wysokoparoprzepuszczalne Sd < 0,10 m (przeważnie Sd = 0,02-0,03 m) pozwalające na układanie materiału termoizolacyjnego bezpośrednio pod nimi (RYS. 7, RYS. 8 i RYS. 9),
- niskoparoprzepuszczalne Sd ≥ 0,10 m, które wymagają dwukanałowej wentylacji dachu (dodatkowa wentylowana szczelina pod membraną).
Zgodnie z PN EN ISO 6946 [10] szczeliny muszą posiadać połączenie ze środowiskiem zewnętrznym otworami o sumarycznym przekroju (nawiew i wywiew) > 1500 mm2/1 m2 wentylowanej połaci dachu.
Ograniczenie liniowych strat ciepła
Złącza budowlane, nazywane także mostkami cielnymi (termicznymi), powstają w wyniku połączenia przegród budynku. Generują one dodatkowe straty ciepła przez przegrody budowlane. Dobór materiałów konstrukcyjnych i izolacyjnych złączy nie powinien być przypadkowy, lecz opierać się na szczegółowych obliczeniach i analizach. Szczególne znaczenie ma poprawne zaprojektowanie złączy przegród zewnętrznych w zakresie zminimalizowania strat ciepła oraz wyeliminowania ryzyka kondensacji na wewnętrznej powierzchni przegrody.
Ze względu na konsekwencje występowania mostków cieplnych warto wysunąć następujące postulaty:
- należy dążyć do ograniczenia wartości niekorzystnego wpływu na straty ciepła i ryzyko kondensacji,
- wszystkie mostki termiczne, których można uniknąć, należy wyeliminować na etapie projektowania lub podczas realizacji budynku,
- wszystkie miejsca występowania mostków, które nie mogą zostać usunięte, lub istniejących mostków cieplnych powinny być tak skonstruowane lub ocieplone, aby ich wpływ na straty ciepła oraz na kondensację był minimalny.
Jednym z podstawowych detali dachu jest połączenie ze ścianą zewnętrzną w przekroju przez murłatę. Poprawne ukształtowanie warstw materiałowych złącza pozwala na ograniczenie dodatkowych strat ciepła oraz uniknięcie ryzyka występowania kondensacji powierzchniowej. Przykłady poprawnie skonstruowanych detali przedstawiono na RYS. 10 i RYS. 11.
RYS. 10. Przykładowe rozwiązania materiałowe połączenia ściany zewnętrznej z stropodachem drewnianym w przekroju przez murłatę.
Objaśnienia: 1 - dachówka, 2 - łata 4×5 cm, 3 - pustka powietrzna/kontrłata 4×5 cm, 4 - wysokoparoprzepuszczalna membrana dachowa, 5 - deski sosnowe 2,5 cm z przerwą 2 cm, 6 - termoizolacja 20 cm/krokiew 10×20 cm, 7 - termoizolacja 5 cm, 8 - folia paroizolacyjna, 9 - płyta gipsowo‑kartonowa 1,25 cm, 10 - pianka montażowa, 11 - murłata 15×15 cm, 12 - kotew galwanizowana gwintowana M12, 13 - wieniec 20×24 cm, 14 - tynk zewnętrzny akrylowy 1 cm, 15 - styropian grafitowy 12 cm, 16 - pustak ceramiczny 24 cm ; rys.: [11]
RYS. 11. Przykładowe rozwiązania materiałowe połączenia ściany zewnętrznej z stropodachem drewnianym w przekroju przez murłatę.
Objaśnienia: 1 - dachówka, 2 - łata 4×5 cm, 3 - pustka powietrzna/kontrłata 4×5 cm, 4 - termoizolacja 18 cm płyta PIR z powłoką ALU, 5 - folia paroizolacyjna, 6 - płyta OSB 2,2 cm, 7 - tynk gipsowy 1 cm, 8 - krokiew 10×20 cm, 9 - murłata 15×15 cm, 10 - kotew galwanizowana gwintowana M12, 11 - wieniec 20×24 cm, 12 - tynk zewnętrzny akrylowy 1 cm, 13 - styropian grafitowy 12 cm, 14 - pustak ceramiczny 24 cm, 15 - płyta gipsowo‑kartonowa 1,25 cm; rys.: [11]
W detalach budowlanych często pomijane są połączenia dachu ze ścianą szczytową. Poniżej przedstawiono analizę dwóch newralgicznych węzłów i ich wariantów:
- połączenie z połacią dachową [(1) rozwiązanie podstawowe i (2) z przekładką termoizolacyjną na ścianie szczytowej],
- połączenie ze stropem na jętkach [(1) rozwiązanie podstawowe, (2) ocieplenie stropu wywinięte na ścianę szczytową, (3) z izolowaną termicznie przestrzenią dachową].
Przyjęto następujące rozwiązania materiałowe przegród:
- Ściana dwuwarstwowa:
- tynk c-w 1,5 cm, λ = 0,84 W/(m∙K),
- mur z cegły pełnej 25 cm, λ = 0,77 W/(m∙K),
- EPS 033 15 cm.
Współczynnik przenikania ciepła U = 0,198 W/(m2∙K).
- Dach o konstrukcji drewnianej ocieplony wełną mineralną:
- międzykrokwiowo 16 cm λ = 0,045 W/(m∙K),
- podkrokwiowo 12 cm, λ = 0,033 W/(m∙K),
- podstufitka z płyty gipsowo-kartonowej 1,25 cm, λ = 0,23 W/(m∙K),
Współczynnik przenikania ciepła U = 0,127 W/(m2∙K).
- Strop na jętkach o konstrukcji drewnianej ocieplony wełną mineralną:
- między jętkami 16 cm λ = 0,045 W/(m∙K),
- na jętkach 12 cm, λ = 0,033 W/(m∙K),
- podstufitka z płyty gipsowo-kartonowej 1,25 cm, λ = 0,23 W/(m∙K).
Współczynnik przenikania ciepła U = 0,127 W/(m2∙K).Warunki brzegowe:
- temperatura wewnętrzna Θi = +20˚C (na podstawie [1]),
- temperatura zewnętrzna Θe = –18˚C (II strefa klimatyczna wg PN-EN 12831 [12],
- temperatura przestrzeni dachowej
- nieocieplonej Θu = –16˚C (na podstawie PN-82/B-02403 [4],
- izolowanej termicznie ocieplonej międzykrokwiowo wełną mineralną o gr. 16 cm, Θu = +4˚C (bilansowa temperatura, obliczona wg PN-EN ISO 13789 [13]), - Opory przejmowania ciepła - wg TAB. 4.
Wartość krytyczna współczynnika temperaturowego wg PN-EN ISO 13788 dla Bydgoszczy i 3 klasy warunków wilgotnościowych [14] ƒRsi,min = 0,783.
TABELA 5. Analiza cieplno-wilgotnościowa węzła połączenia ściany szczytowej z połacią dachową (opracowanie własne)
TABELA 6. Analiza cieplno-wilgotnościowa węzła połączenia ściany szczytowej ze stropem na jętkach (opracowanie własne)
Wpływ rozwiązania węzłów ściany szczytowej na straty ciepła przez dach przeanalizowano na podstawie połaci dachowej o geometrii wg RYS. 12.
RYS. 12. Model połaci przyjęty do obliczeń energetycznych; rys.: M. Wesołowska, K. Pawłowski i P. Rożek
Przyjęto trzy warianty:
- A - rozwiązania węzłów w wariancie 1 wg TAB. 5 i TAB. 6,
- B - rozwiązania węzłów w wariancie 2 wg TAB. 5 i TAB. 6,
- C - rozwiązania węzłów w wariancie 2 wg TAB. 5 i wariancie 3 wg TAB. 6
Wyniki zestawiono w TAB. 7.
Na podstawie przeprowadzonych obliczeń cieplnych i energetycznych należy jednoznacznie zdyskwalifikować rozwiązania zdefiniowane w wariancie A.
Węzły są zagrożone ryzykiem rozwoju pleśni i generują dodatkowe straty ciepła na poziomie 6,5%. Uciąglenie izolacji na szczycie przekładką termoizolacyjną o grubości minimum 4 cm oraz wywiniecie izolacji stropu na jętkach na ścianę szczytową (5 cm grubości na wysokość minimum 50 cm) niweluje te straty. Docieplenie połaci dachowej nad przestrzenią nieogrzewaną pozwala na dalsze ograniczenie strat ciepła.
Mostki powietrzne i szczelność powietrzna poddasza
Nieodłącznym elementem bilansu są straty przez wentylację. Ich wielkość w dużej mierze zależy od infiltracji, która jest efektem nieszczelności w obudowie budynku. Przyjmując dane zestawione w TAB 2, otrzymuje się dodatkowe straty ciepła (TAB. 6), których wartość może być wyższa od wartości wynikających z przenikania. W zależności od szczelności dachu zapotrzebowanie na ciepło poddasza może wzrosnąć nawet dwukrotnie (TAB. 8).
W drewnianej konstrukcji dachu szczelność jest zapewniana na wewnętrznej powierzchni dachu. Kreują ją folie parolizolacyjne klasyczne, aktywne lub z warstwą refleksyjną.
Należy jednak zwrócić uwagę, że wysoka wartość Sd wyrobu nie jest tożsama ze szczelnością warstwy [15]. Poza stykami arkuszy folii należy zabezpieczyć styki z sąsiednimi przegrodami oraz przejścia wszelkich instalacji. Każde mocowanie folii do konstrukcji musi zostać uszczelnione. W dachu jest to jedyna powłoka, która odpowiada za szczelność powietrzną. Nie dopuszcza się dodawania kolejnych warstw szczelnych przed lub za nią, np. płyt gipsowo-kartonowych. Przykładowe rozwiązania przedstawiono na RYS. 13.
RYS. 13. Zapewnienie szczelności w potencjalnych mostkach powietrznych połaci dachowej. Objaśnienia: 1 - taśma uszczelniająca, 2 - listwa dociskowa, 3 - mocowanie rusztu, uszczelnione, 4 - paroizolacja; rys.: M. Wesołowska, K. Pawłowski i P. Rożek
Literatura
- Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU 2017, poz. 2285).
- Program priorytetowy: "Poprawa efektywności energetycznej. Dopłaty do kredytów na budowę domów energooszczędnych", Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej w Warszawie.
- PN-EN ISO 13788:2003, "Cieplno-wilgotnościowe właściwości komponentów budowlanych i elementów budynku. Temperatura powierzchni wewnętrznej konieczna do uniknięcia krytycznej wilgotności powierzchni i kondensacja międzywarstwowa. Metody obliczania".
- PN-82/B-02403, "Ogrzewnictwo. Temperatury obliczeniowe zewnętrzne".
- PN- EN 10211: 2008, "Mostki cieplne w budynkach. Strumienie ciepła i temperatury powierzchni. Obliczenia szczegółowe".
- PN-EN ISO 9972:2015-10, "Cieplne właściwości użytkowe budynków. Określanie przepuszczalności powietrznej budynków. Metoda pomiaru ciśnieniowego z użyciem wentylatora".
- K. Pawłowski, "Innowacyjne rozwiązania materiałów termoizolacyjnych w aspekcie modernizacji budynków w Polsce", "Izolacje" 3/2018, s. 48-64.
- M. Wesołowska, K. Pawłowski, "Aspekty związane z dostosowaniem obiektów istniejących do standardów budownictwa energooszczędnego", Agencja Reklamowa TOP, Włocławek 2016. Praca wydana w ramach projektu finansowanego ze środków funduszy norweskich i środków krajowych.
- M. Maciaszek, "Studium projektowe przegród zewnętrznych i ich złączy z zastosowaniem nowoczesnych materiałów izolacyjnych", Praca dyplomowa inżynierska napisana pod kierunkiem dr. inż. K. Pawłowskiego, UTP w Bydgoszczy, Bydgoszcz 2016.
- PN-EN ISO 6946:2008, "Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania".
- K. Maciąg, "Współczesne rozwiązania materiałowe stropodachów drewnianych i ich złączy w aspekcie cieplno‑wilgotnościowym", Praca dyplomowa inżynierska napisana pod kierunkiem dr. inż. K. Pawłowskiego, UTP w Bydgoszczy, Bydgoszcz 2018.
- PN-EN 12831:2006, "Instalacje ogrzewcze w budynkach. Metoda obliczania projektowego obciążenia cieplnego".
- PN-EN ISO 13789: 2008, "Cieplne właściwości użytkowe budynków. Współczynniki przenoszenia ciepła przez przenikanie i wentylację. Metoda obliczania".
- "Domy energooszczędne. Poradnik dobrych praktyk", KAPE 2012.
- M. Wesołowska, P. Szczepaniak, "Nowe wymagania w ocenie wilgotnościowej przegród", "Izolacje" 3/2009, s. 34-37.
- A. Dylla, "Praktyczna fizyka cieplna budowli", Wydawnictwo uczelniane UTP, Bydgoszcz 2009.