Izolacje.com.pl

Zaawansowane wyszukiwanie

Badania systemów ociepleń na bazie EPS w dużej skali z uwzględnieniem pasów MW

Large-scale testing of eps thermal insulation solutions with mineral wool strips

Aby zwiększyć bezpieczeństwo pożarowe systemów ociepleniowych z użyciem EPS, w wielu krajach UE zalecane jest stosowanie systemów mieszanych.
Fot.: M. Niziurska, B. Chruściel, M. Wieczorek

Aby zwiększyć bezpieczeństwo pożarowe systemów ociepleniowych z użyciem EPS, w wielu krajach UE zalecane jest stosowanie systemów mieszanych.


Fot.: M. Niziurska, B. Chruściel, M. Wieczorek

Bezpieczeństwo pożarowe budynków jest jednym z siedmiu podstawowych wymagań stawianych budynkom [1]. Stało się ono również bardzo ważnym tematem, szczególnie w odniesieniu do materiałów stosowanych na elewacjach, które po pożarach we Frankfurcie (2012) i Grenfell Tower w Londynie (2017) zostały objęte unijnymi programami badawczymi.

Zobacz także

Fiberglass Fabrics sp. z o.o. Tynki i farby w dużych inwestycjach budowlanych

Tynki i farby w dużych inwestycjach budowlanych Tynki i farby w dużych inwestycjach budowlanych

Przy projektowaniu i realizacji dużych inwestycji, takich jak osiedla mieszkaniowe, biurowce czy obiekty użyteczności publicznej, kluczowe znaczenie ma wybór odpowiednich materiałów wykończeniowych. Nie...

Przy projektowaniu i realizacji dużych inwestycji, takich jak osiedla mieszkaniowe, biurowce czy obiekty użyteczności publicznej, kluczowe znaczenie ma wybór odpowiednich materiałów wykończeniowych. Nie do przecenienia jest rola tynków i farb, które wpływają na wygląd budynków, a także na ich trwałość i komfort użytkowania.

Connector.pl Nowoczesne piany poliuretanowe – szczelne i trwałe ocieplenie budynku

Nowoczesne piany poliuretanowe – szczelne i trwałe ocieplenie budynku Nowoczesne piany poliuretanowe – szczelne i trwałe ocieplenie budynku

Firma Connector.pl to największy polski dystrybutor materiałów do produkcji kompozytów, będący liderem na rynku od ponad 30 lat. W swojej ofercie posiadamy szeroką gamę produktów, a wśród nich znakomitej...

Firma Connector.pl to największy polski dystrybutor materiałów do produkcji kompozytów, będący liderem na rynku od ponad 30 lat. W swojej ofercie posiadamy szeroką gamę produktów, a wśród nich znakomitej jakości piany PUR otwarto- i zamkniętokomórkowe.

Czytaj całość »
Czy piana poliuretanowa jest palna? Czy piana poliuretanowa jest palna?

M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.

Czytaj całość »

Abstrakt

Przedmiotem artykułu są szeroko zakrojone badania systemów ociepleń na bazie eps z uwzględnieniem pasów mw. Porównano w nim wymagania w zakresie bezpieczeństwa pożarowego w niektórych krajach UE na podstawie normy BS 8414‑1:2015+A1:2017. Omówiono proces badawczy z uwzględnieniem ściany EPS ­system oraz ­SYSTEM EPS z nadprożem MW. Przedstawiono wyniki badań w zakresie przebiegu zmian temperatury w trakcie badania obu ścian uwieńczone porównaniem średnich temperatur zmierzonych w czasie badania.

Large-scale testing of eps thermal insulation solutions with mineral wool strips

This paper describes large-scale tests on EPS insulation systems with mineral wool strips. It contains a summary of fire safety requirements specified in BS 8414-1:2015+A1:2017 standard, adopted in certain EU countries. It also describes the testing procedure performed for walls with EPS SYSTEM and EPS SYSTEM with lintel insulated with mineral wool. Temperature changes during the test have been analysed and average temperatures measured in the course of the test have been compared.

Jednym z najważniejszych aspektów związanych z bezpieczeństwem pożarowym elewacji, pełniącej najczęściej również funkcję ocieplenia, jest wybór materiału izolacyjnego, będącego jej podstawowym składnikiem i mającym potencjalnie największe znaczenie dla rozwoju pożaru.

Rynek systemów ociepleniowych zdominowany jest przez dwa podstawowe materiały termoizolacyjne: wełnę mineralną i styropian:

  • wełna mineralna jest materiałem stosowanym przede wszystkim na budynkach wysokich, dla których określono wymagania w zakresie palności stosowanych materiałów,
  • styropian kładziony jest na budynkach niższych, zgodnie z obowiązującymi wymaganiami prawnymi w kraju zastosowania, przykładowo w Polsce do 25 m [2].

Styropian dopuszczony do zastosowania na elewacjach musi posiadać klasę reakcji na ogień co najmniej E, co odpowiada definicji materiału palnego, samogasnącego [2], natomiast wełna jest z definicji materiałem niepalnym, najczęściej klasy reakcji na ogień A1. Styropian posiada więc gorsze cechy w zakresie odporności na działanie ognia i pod jego wpływem topi się.

Aby zwiększyć bezpieczeństwo pożarowe systemów ociepleniowych z użyciem EPS, w wielu krajach Unii Europejskiej zalecane jest stosowanie systemów mieszanych ( RYS. 1 ).

W różnych krajach w zależności od wysokości budynku stosowane są pasy międzykondygnacyjne, zabezpieczenia nad otworami okiennymi i drzwiowymi lub całe pasy z wełny wzdłuż ciągów komunikacyjnych. Rozwiązanie to obarczone jest wadami, które widoczne są podczas normalnego użytkowania systemu.

Stosowanie takich rozwiązań może skutkować:

  • spękaniami warstwy zbrojącej i tynkarskiej w związku z różną rozszerzalnością cieplną materiałów pod wpływem czynników zewnętrznych np. temperatury,
  • przebarwieniami elewacji związanymi z różną nasiąkliwością materiałów izolacyjnych.
RYS. 1. Porównanie wymagań w zakresie bezpieczeństwa pożarowego w niektórych krajach UE; rys.: MIWO

RYS. 1. Porównanie wymagań w zakresie bezpieczeństwa pożarowego w niektórych krajach UE; rys.: MIWO

Najważniejszy jest jednak cel, dla którego stosuje się takie rozwiązania.

RYS. 2. Schemat ściany badawczej z rozmieszczonymi czujnikami temperatury; rys.:[4]

RYS. 2. Schemat ściany badawczej z rozmieszczonymi czujnikami temperatury; rys.:[4]

FOT. 1. Widok ściany przygotowanej do badania; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

FOT. 1. Widok ściany przygotowanej do badania; fot.: M. Niziurska, B. Chruściel, M. Wieczorek 

Z uwagi na brak informacji na temat skuteczności takich rozwiązań w Łukasiewicz - Instytucie Ceramiki i Materiałów Budowlanych, Oddział w Krakowie przeprowadzono wstępne badania systemów z zastosowaniem pasów z wełny mineralnej w zakresie bezpieczeństwa pożarowego.

Badania

Badania rozprzestrzeniania ognia w dużej skali wykonano zgodnie z normą BS 8414-1:2015+A1:2017 [4]. Określa ona metodę oceny zachowania wobec ognia nienośnej okładziny zewnętrznej systemu mocowanej do ściany murowanej budynku, gdy jest narażona na ogień w kontrolowanych warunkach. Ta ekspozycja jest reprezentatywna zarówno dla zewnętrznego źródła ognia, jak i w pełni rozwiniętego pożaru wewnętrznego, który jest rozprzestrzeniany przez otwory okienne lub inne, prowadząc do narażenia systemu termoizolacyjnego (okładzin) na działanie płomieni zewnętrznych. Schemat stanowiska badawczego wraz z rozmieszczeniem termoelementów przedstawiono na RYS. 2.

Pożar jest symulowany przez spalanie drewna w komorze spalania, które wytwarza około 4500 MJ energii w trakcie 30-minutowego testu.
Podstawowym kryterium jest stopień rozprzestrzeniania się płomienia w czasie. Badanie wymaga, aby temperatura na poziomie 2 nie przekroczyła 600°C w czasie 15 min. Czas ten liczony jest od momentu osiągnięcia temperatury 200°C na poziomie 1.

Do 24 h po badaniu (po wychłodzeniu próbki) należy również dokonać oględzin systemu w celu określenia zakresu zniszczeń, takich jak: odpryski, stopienie, zniekształcenie i rozwarstwienie (nie uwzględniając osmolenia dymem i przebarwień). Do oceny może okazać się konieczne częściowe rozebranie systemu.

Należy opisać następujące aspekty:

  • zasięg płomieni na powierzchni systemu okładzin (w pionie i poziomie),
  • zasięg płomieni oraz uszkodzenia w pośrednich warstwach (w pionie i poziomie),
  • szacowany zasięg płomieni oraz uszkodzenia w szczelinie, w przypadku istnienia takiej szczeliny (w pionie i poziomie),
  • zakres, w jakim zewnętrzna powierzchnia systemu okładzin uległa spaleniu lub odpadła,
  • szczegóły odpadnięcia częściowego lub całościowego systemu okładzin.

Rozmieszczenie termoelementów pomiarowych na badanej ścianie badawczej widocznej na RYS. 2 i FOT. 1 :

  • poziom 1 - A - termoelementy usytuowane 2,5 m nad komorą palenia na zewnątrz ściany,
  • poziom 2 - B - termoelementy usytuowane 5 m nad komorą palenia na zewnątrz ściany,
  • poziom 2 - C - termoelementy usytuowane 5 m nad komorą palenia w warstwie zbrojonej,
  • poziom 2 - D - termoelementy usytuowane 5 m nad komorą palenia w warstwie materiału izolacyjnego.

Próbki do badań

Celem badania była ocena skuteczności zabezpieczenia ocieplenia wykonanego ze styropianu pasami z wełny mineralnej zastosowanymi w nadprożu komory badawczej. W tym celu wykonano dwa badania porównawcze ścian badawczych z ociepleniem EPS i EPS z pasem wełny o szerokości 20 cm na całej długości nadproża komory spalania. Wszystkie pozostałe materiały do badań, tj. składniki systemu ociepleń oraz materiały pomocnicze, jak również system montażu i grubości warstw, były jednakowe w obu próbkach.

Ściana I - system EPS

Na RYS. 3 przedstawiono schemat wykonanej ściany z izolacją z EPS. Przeprowadzone badania ilustrują FOT. 2, FOT. 3, FOT. 4, FOT. 5 i FOT. 6.
Wyniki pomiarów temperatury w trakcie badania ściany EPS przedstawiono na RYS. 4RYS. 5RYS. 6 i RYS. 7.

Obserwacje

  • W pierwszych minutach badania zaobserwowano wzrosty temperatur mierzonych przez termoelementy zewnętrzne na poziomie 1. 
  • Znaczny wzrost temperatury na poziomie 2 nastąpił po ok. 6 min, tj. wówczas gdy stos drewna palił się w całej objętości. W tym czasie nie zaobserwowano istotnego wzrostu temperatury w warstwie zbrojonej i w materiale izolacyjnym.
  • Po ok. 12 minutach zaobserwowano pęknięcie warstwy zbrojonej, co pozwoliło przedostać się płomieniowi pod siatkę i zapoczątkowało palenie styropianu - nagły wzrost na termoparach w materiale izolacyjnym i warstwie zbrojącej. Widoczny był również wyciek stopionego styropianu, co podsycało palenie się stosu drewna. Potwierdza to wzrost temperatur na poziomie 2 w termoparach zewnętrznych.
FOT. 2. Ściana EPS podczas badania; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

FOT. 2. Ściana EPS podczas badania; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

FOT. 3. Ściana EPS po zakończeniu badania; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

FOT. 3. Ściana EPS po zakończeniu badania; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

FOT. 4. Nadproże komory spalania ściany EPS po badaniu; fot.: M. Niziurska, B. Chruściel, M. Wieczorek [1]

FOT. 4. Nadproże komory spalania ściany EPS po badaniu; fot.: M. Niziurska, B. Chruściel, M. Wieczorek [1]

FOT. 5. Nadproże komory spalania ściany EPS po badaniu; fot.: M. Niziurska, B. Chruściel, M. Wieczorek [2]

FOT. 5. Nadproże komory spalania ściany EPS po badaniu; fot.: M. Niziurska, B. Chruściel, M. Wieczorek [2]

FOT. 6. Ściana EPS po usunięciu warstwy zbrojonej; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

FOT. 6. Ściana EPS po usunięciu warstwy zbrojonej; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

Ściana II - system EPS z nadprożem MW

W rozwiązaniu tym zastosowano barierę ogniową w nadprożu komory spalania wykonaną z wełny mineralnej klasy reakcji na ogień A1, pas o szerokości 20 cm. Przeprowadzone badania ilustrują FOT. 7, FOT. 8, FOT. 9, FOT. 10 i FOT. 11.

Na RYS. 8 przedstawiono schemat ściany z izolacją z EPS.

RYS. 7. Przebieg zmian temperatury w trakcie badania ściany EPS, tj. 5 m nad komorą spalania, termoelementy w warstwie izolacji; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

RYS. 7. Przebieg zmian temperatury w trakcie badania ściany EPS, tj. 5 m nad komorą spalania, termoelementy w warstwie izolacji; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

RYS. 8. Schemat ściany i opis składników ocieplenia z EPS z nadprożem MW

RYS. 8. Schemat ściany i opis składników ocieplenia z EPS z nadprożem MW. Objaśnienia: 1 - zaprawa klejąca cementowa do przyklejania styropianu, 2 - styropian TR 100 o grubości 15 cm, 3 - wełna mineralna TR 10 o grubości 15 mm (pas o szer. 20 cm zainstalowany na nadprożu komory ogniowej), 4 - łączniki mechaniczne - 4 szt./m2, 5 - siatka z włókna szklanego o gramaturze 158 g/cm3, 6 - zaprawa klejąca do wykonywania zbrojenia (cementowa), 7 - silikonowy podkład tynkarski, 8 - tynk silikonowy, 9 - listwy startowe, 10 - narożniki; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

RYS. 9. Przebieg zmian temperatury w trakcie badania ściany EPS z nadprożem z wełny mineralnej - poziom 1, tj. 2,5 m nad komorą spalania, termoelementy zewnętrzne; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

RYS. 9. Przebieg zmian temperatury w trakcie badania ściany EPS z nadprożem z wełny mineralnej - poziom 1, tj. 2,5 m nad komorą spalania, termoelementy zewnętrzne; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

Wyniki pomiarów temperatury w trakcie badania ściany EPS z nadprożem MW przedstawiono na RYS. 9, RYS. 10, RYS. 11 i RYS. 12.

FOT. 7. Widok nadproża komory spalania w trakcie montażu ocieplenia; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

FOT. 7. Widok nadproża komory spalania w trakcie montażu ocieplenia; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

FOT. 8. Widok nadproża komory spalania po badaniu; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

FOT. 8. Widok nadproża komory spalania po badaniu; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

Obserwacje

  • W trakcie palenia zaobserwowano przedostanie się płomienia pod warstwę zbrojąca z tynkiem przez powstałe szczeliny. Towarzyszył temu wzrost temperatury po około 13 minutach badania widoczny na wykresach zmian temperatury w warstwie zbrojącej. Nie zaobserwowano jednak wypływającego stopionego EPS.
  • Na RYS. 12 widoczny jest wzrost temperatur w 20 min palenia.
  • Po rozsypaniu się stosu drewna, czyli kiedy płomień od źródła ognia nie działał już na badaną próbkę, zaobserwowano dalsze palenie pod warstwą zbrojoną (RYS. 11). Uszkodzenie warstwy zbrojonej nastąpiło od wnętrza ocieplenia nad belką.

Na RYS. 13 przedstawiono porównanie średnich temperatur, mierzonych przez poszczególne termoelementy umieszczone w materiale izolacyjnym (porównanie wyników zamieszczonych na RYS. 7 i RYS. 12 ).

FOT. 9. Ściana EPS z nadprożem w trakcie badania; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

FOT. 9. Ściana EPS z nadprożem w trakcie badania; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

FOT. 10. Widok ściany EPS z nadprożem z wełny mineralnej po badaniu; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

FOT. 10. Widok ściany EPS z nadprożem z wełny mineralnej po badaniu; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

FOT. 11. Widok ściany EPS z nadprożem z wełny mineralnej po usunięciu warstwy zbrojonej; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

FOT. 11. Widok ściany EPS z nadprożem z wełny mineralnej po usunięciu warstwy zbrojonej; fot.: M. Niziurska, B. Chruściel, M. Wieczorek

Na podstawie przedstawionego zestawienia można stwierdzić, że średnie temperatury zmierzone w warstwie izolacji są zauważalnie wyższe w przypadku pomiarów dla ściany z nadprożem z MW.

Istotny wzrost temperatury zmierzonej przez termoelementy zamocowane w warstwie izolacji w tej próbce stwierdzono po około 20 minutach badania.

Uwzględniając porównanie wyników pomiarów temperatury na poziomie 1, czyli 2,5 m ponad komorą spalania (porównanie na RYS. 14 ), można wykluczyć wpływ warunków zewnętrznych czy też wzrostu temperatury wynikającego z kaloryczności lub intensywności spalania drewna.

RYS. 10. Przebieg zmian temperatury w trakcie badania ściany EPS z nadprożem z wełny mineralnej - poziom 2, tj. 5 m nad komorą spalania, termoelementy zewnętrzne; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

RYS. 10. Przebieg zmian temperatury w trakcie badania ściany EPS z nadprożem z wełny mineralnej - poziom 2, tj. 5 m nad komorą spalania, termoelementy zewnętrzne; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

RYS. 11. Przebieg zmian temperatury w trakcie badania ściany EPS z nadprożem z wełny mineralnej, tj. 5 m nad komorą spalania, termoelementy w warstwie zbrojonej; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

RYS. 11. Przebieg zmian temperatury w trakcie badania ściany EPS z nadprożem z wełny mineralnej, tj. 5 m nad komorą spalania, termoelementy w warstwie zbrojonej; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

RYS. 12. Przebieg zmian temperatury w trakcie badania ściany EPS z nadprożem z wełny mineralnej, tj. 5 m nad komorą spalania, termoelementy w materiale izolacyjnym; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

RYS. 12. Przebieg zmian temperatury w trakcie badania ściany EPS z nadprożem z wełny mineralnej, tj. 5 m nad komorą spalania, termoelementy w materiale izolacyjnym; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

RYS. 13. Porównanie średnich temperatur zmierzonych w czasie badania w warstwie izolacji na poziomie 2, tj. 5 m ponad komorą spalania; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

RYS. 13. Porównanie średnich temperatur zmierzonych w czasie badania w warstwie izolacji na poziomie 2, tj. 5 m ponad komorą spalania; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

RYS. 14. Porównanie średnich temperatur zmierzonych w czasie badania przez termoelementy zewnętrzne na poziomie 1, tj. 2,5 m ponad komorą spalania; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

RYS. 14. Porównanie średnich temperatur zmierzonych w czasie badania przez termoelementy zewnętrzne na poziomie 1, tj. 2,5 m ponad komorą spalania; rys.: M. Niziurska, B. Chruściel, M. Wieczorek

Wnioski

Na uwagę zasługuje fakt, że oba systemy spełniły kryteria określone w normie BS 8414-1 dla ścian nierozprzestrzeniających ognia, tj. temperatura na poziomie 2 nie przekroczyła 600°C w czasie określonym normą.

Porównując wyniki obydwu przeprowadzonych badań, nie można stwierdzić korzyści z zastosowania pasów z wełny mineralnej o szerokości 20 cm w nadprożu otworu, z którego wydostaje się płomień. W obu przypadkach badanych próbek ocieplenia, tj. z EPS i EPS z nadprożem z wełny mineralnej, styropian wypalił/wytopił się całkowicie na całej wysokości ściany. Nie wynikało to jednak z rozprzestrzeniania ognia przez system. W przypadku ściany z nadprożem MW w końcowym etapie badania zaobserwowano przy tym większy wzrost temperatury na poziomie 2.

Zaobserwowano również, że stopiony styropian spływający na powierzchnię wełny mineralnej pali się intensywniej niż kiedy spływa na powierzchnię materiału niepalnego o zwartej strukturze i małej zawartości części organicznych jakim jest np. warstwa zbrojona. Można to zdefiniować jako efekt "knota" obserwowany wcześniej w wielu badaniach w małej skali.

Badania te, które zostaną omówione w kolejnym opracowaniu, potwierdzają również, że stosowanie przegród z materiałów niepalnych w formie wklejonych belek/płyt MW pomiędzy płytami styropianowymi nie będzie poprawiać bezpieczeństwa pożarowego elewacji, jeżeli szerokość tych przegród jest na tyle mała, że płomień sięga powyżej materiału niepalnego.

Należy jednocześnie zaznaczyć, że przeprowadzone badania w dużej skali dotyczą pojedynczych próbek - ścian badawczych. Jednoznaczne stwierdzenie braku korzyści, a nawet pogorszenia warunków bezpieczeństwa pożarowego przy zastosowaniu takich rozwiązań wymaga przeprowadzenia szerszego programu badań pozwalającego dokonać statystycznej analizy wyników oraz badań uzupełniających.

Literatura

  1. Rozporządzenie Parlamentu Europejskiego i Rady (UE) nr 305/2011 z dnia 9 marca 2011 r. ustanawiające zharmonizowane warunki wprowadzania do obrotu wyrobów budowlanych i uchylające dyrektywę Rady 89/106/EWG.
  2. Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie, z późniejszymi zmianami (DzU z 2017 r. poz. 2285).
  3. PN-EN 13501-1:2017, "Klasyfikacja ogniowa wyrobów budowlanych i elementów budynków. Część 1: Klasyfikacja na podstawie badań reakcji na ogień".
  4. BS 8414‑1:2015+A1:2017, "Fire performance of external cladding systems".

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Komentarze

Pokaż komentarze (2)
  • happypilot happypilot, 05.03.2020r., 13:48:35 Bardzo ciekawy test nie wiedziałem że są takie różnice.
  • Bielik Bielik, 09.03.2020r., 09:06:49 To daje do myślenia, większość z nas i tak będzie myśleć o takich rzeczach po fakcie.

Powiązane

Paweł Siemieniuk Rodzaje stropów w budynkach jednorodzinnych

Rodzaje stropów w budynkach jednorodzinnych Rodzaje stropów w budynkach jednorodzinnych

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania...

Zadaniem stropu jest przede wszystkim podział budynku na kondygnacje. Ponieważ jednak nie jest to jego jedyna funkcja, rodzaj tej poziomej przegrody musi być dobrze przemyślany, i to już na etapie projektowania domu. Taka decyzja jest praktycznie nieodwracalna, gdyż po wybudowaniu domu trudno ją zmienić.

Czytaj całość »
Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

inż. Izabela Dziedzic-Polańska Ekologiczne i ekonomiczne ujęcie termomodernizacji budynków mieszkalnych

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć...

Termomodernizacja budynku jest ważna ze względu na jej korzyści dla środowiska i ekonomii. Właściwie wykonana termomodernizacja może znacznie zmniejszyć zapotrzebowanie budynku na energię i zmniejszyć emisję gazów cieplarnianych związanych z ogrzewaniem i chłodzeniem. Ponadto, zmniejszenie kosztów ogrzewania i chłodzenia może przyczynić się do zmniejszenia kosztów eksploatacyjnych budynku, co może przełożyć się na zwiększenie jego wartości.

Czytaj całość »

prof. dr hab. inż. Łukasz Drobiec Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2)

Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2) Projektowanie wzmocnień konstrukcji murowych z wykorzystaniem systemu FRCM (cz. 2)

Artykuł jest kontynuacją tekstu opublikowanego w numerze 2/2023 miesięcznika IZOLACJE.

Artykuł jest kontynuacją tekstu opublikowanego w numerze 2/2023 miesięcznika IZOLACJE.

Wybrane dla Ciebie

Źródło OZE z dopłatą 50% »

Źródło OZE z dopłatą 50% » Źródło OZE z dopłatą 50% »

Łatwa hydroizolacja skomplikowanych powierzchni dachowych »

Łatwa hydroizolacja skomplikowanych powierzchni dachowych » Łatwa hydroizolacja skomplikowanych powierzchni dachowych »

Docieplanie budynków to nie problem »

Docieplanie budynków to nie problem » Docieplanie budynków to nie problem »

Trwały kolor tynku? To możliwe! »

Trwały kolor tynku? To możliwe! » Trwały kolor tynku? To możliwe! »

Piany poliuretanowe, otwartokomórkowe »

Piany poliuretanowe, otwartokomórkowe » Piany poliuretanowe, otwartokomórkowe »

Zatrzymaj cenne ciepło wewnątrz »

Zatrzymaj cenne ciepło wewnątrz » Zatrzymaj cenne ciepło wewnątrz »

EKOdachy spadziste »

EKOdachy spadziste » EKOdachy spadziste »

Skuteczna walka z wilgocią w ścianach »

Skuteczna walka z wilgocią w ścianach » Skuteczna walka z wilgocią w ścianach »

Trwałe drzwi na zewnątrz i do wnętrz »

Trwałe drzwi na zewnątrz i do wnętrz » Trwałe drzwi na zewnątrz i do wnętrz »

Oszczędzanie przez ocieplanie »

Oszczędzanie przez ocieplanie » Oszczędzanie przez ocieplanie »

Uszczelnianie fundamentów »

Uszczelnianie fundamentów » Uszczelnianie fundamentów »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka » Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.