Mechaniczne mocowanie systemów ocieplania ścian ETICS – wpływ oddziaływania wiatru na ocieplenie
Mechanical fastening of etics wall insulation systems – effect of wind on insulation
Widok zrywania przy próbie przeciągania płyty z materiału termoizolacyjnego przez łączniki mechaniczne: styropian grafitowy gr. 5 cm; fot.: P. Gaciek
Jednym z podstawowych sposobów mocowania ociepleń ETICS do podłoży nośnych jest mocowanie mechaniczne, w którym do przytwierdzania termoizolacji stosuje się łączniki mechaniczne, zawsze jednak z dodatkowym udziałem klejenia płyt izolacji termicznej do ocieplanej powierzchni. Ten sposób mocowania systemów wymaga wykonania obliczeń uzasadniających przyjętą liczbę i rodzaj łączników.
Zobacz także
M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
Ultrapur Sp. z o.o. Pianka poliuretanowa a szczelność budynku
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który...
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który określa właściwości izolacyjne materiału. Jednocześnie jest współczynnikiem wysoce niedoskonałym – określa, jak dany materiał może opierać się utracie ciepła poprzez przewodzenie.
Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.
O różnych zagadnieniach związanych z mocowaniem systemów ociepleń autorzy pisali już w wydaniach 10/2018, 2/2019 i 9/2019 miesięcznika „Izolacje” [1–3], a niniejszy artykuł stanowi kolejną część cyklu poświęconego istotnym aspektom mocowania ETICS i metodyce postępowania przy posługiwaniu się Kalkulatorem Łączników SSO [4].
O czym przeczytasz w artykule:
|
Przedmiotem artykułu jest mechaniczne mocowanie systemów ocieplania ścian etics ze szczególnym uwzględnieniem wpływu oddziaływania wiatru na ocieplenie. Autorzy omawiają oddziaływanie wiatru na ściany ocieplane etics, wpływ wiatru na ocieplenie ścian oraz cechy materiałów i połączeń mające wpływ na nośność etics przy oddziaływaniu wiatru. Mechanical fastening of etics wall insulation systems – effect of wind on insulationThe subject of the article is the mechanical fastening of ETICS wall insulation systems, with particular emphasis on the effect of wind on thermal insulation. The authors discuss the effect of wind on walls insulated with ETICS, the effect of wind on wall insulation, and the features of materials and connections that affect the load-bearing capacity of ETICS system under wind load. |
Oddziaływanie wiatru na ściany ocieplane ETICS
Jak zostało to przedstawione w poprzednim artykule autorów [3], w przypadku stosowania materiałów termoizolacyjnych o pomijalnie małym tzw. pęcznieniu grubości obciążeniem analizowanym przy projektowaniu zamocowania systemu ETICS do podłoża jest oddziaływanie wiatru.
Zgodnie z normą PN-EN 1991-1-4:2008 [5] oddziaływanie wiatru w obliczeniach projektowych może być zasadniczo rozpatrywane jako:
- ciśnienie wiatru działające na powierzchnie zewnętrzne i wewnętrzne obiektu budowlanego,
- siły wywierane przez wiatr na cały obiekt względnie jego element konstrukcyjny, uwzględniające wpływ na oddziaływanie wiatru niejednoczesnego występowania wartości szczytowych ciśnienia na powierzchni konstrukcji wraz z wpływem drgań konstrukcji.
W przypadku systemów ETICS właściwym postępowaniem jest przyjęcie oddziaływania wiatru jako ciśnienia (a dokładniej – podciśnienia, inaczej ssania wiatru) działającego na powierzchnie zewnętrzne, prostopadle do nich. Wyjątkiem, bardzo rzadkim, może być uwzględnienie sił stycznych do podłużnych ścian budynku, jeśli wynika to z proporcji wymiarowych jego rzutu, a rozwiązanie ocieplenia uzasadnia wzięcie pod uwagę tych sił (ocieplenie ściany szczytowej z przewinięciem jednej płyty termoizolacji na ściany podłużne).
Ciśnienie wiatru działające na powierzchnie zewnętrzne przedstawia wzór
we = qp(ze) · cpe,
w którym:
qp(ze) – wartość szczytowa ciśnienia prędkości wiatru,
cpe – współczynnik ciśnienia zewnętrznego,
ze – wysokość odniesienia do obliczeń ciśnienia zewnętrznego.
Wszystkie wartości wielkości przyjmowanych do określenia ciśnienia prędkości są wartościami charakterystycznymi, a zatem można zapisać:
we,k = we
oraz
we,d = we,k · γf,
gdzie:
we,k – wartość charakterystyczna ciśnienia wiatru na powierzchnie zewnętrzne,
we,d – wartość obliczeniowa ciśnienia wiatru na powierzchnie zewnętrzne,
γf – współczynnik częściowy (częściowy współczynnik bezpieczeństwa).
Szczegółowe postępowanie przy wyznaczaniu oddziaływania wiatru jako ciśnienia na powierzchnie zewnętrzne pokazano na RYS. 1.
RYS. 1. Schemat postępowania przy określaniu oddziaływania wiatru jako ciśnienia na powierzchnie zewnętrzne; rys.: M. Gaczek
Poniżej przedstawiono kilka istotnych uwag dotyczących tego zagadnienia.
Ze względu na to, że wiatr jest oddziaływaniem środowiskowym, podstawą określenia jego oddziaływania na obiekt budowlany jest ustalenie, jakich warunków klimatycznych można się spodziewać w miejscu lokalizacji obiektu. Z uwagi na terytorialną zmienność tych warunków wyróżnia się odpowiednie strefy obejmujące tereny o zbliżonej intensywności oddziaływania, w tym przypadku charakterystycznej prędkości wiatru, nazywanej w normie [5] wartością podstawową bazowej prędkości wiatru.
Wprowadzony do Załącznika krajowego NA w normie PN-EN 1991-2-4:2008 [5] podział Polski na strefy prędkości i obciążenia wiatrem pokazano na RYS. 2.
RYS. 2. Podział Polski na strefy obciążenia wiatrem, wg Załącznika krajowego NA do PN‑EN 1991-2-4:2008; rys.: [5]
Z uwagi na charakter zjawiska meteorologicznego, jakim jest wiatr, nie występują oczywiście skokowe zmiany jego prędkości między strefami, jednak ze względów formalnych strefy mają określone granice. Dokładność ich wyznaczenia nie jest duża, a odchyłki mogą wynosić nawet kilkadziesiąt kilometrów [7]. Z tego względu w Załączniku krajowym NA do PN-EN 1991-2‑4:2008 [5] zapisano, że na granicy stref 1 i 2, w pasach szerokości 10 km po obu stronach granicy, można stosować wartość średnią z obu stref, a zatem prędkość wiatru wynoszącą (22+26)/2 = 24 m/s. Przebieg tych pasów pokazano na RYS. 3.
RYS. 3. Fragment mapy Polski ze strefami obciążenia wiatrem wg Załącznika krajowego NA do normy [5], z zaznaczonymi pasami szerokości 10 km po obu stronach granicy między strefami 1 i 2 [6]. Przy ustalaniu prędkości wiatru i ciśnienia prędkości wiatru w pasach tych można stosować wartość średnią z obu graniczących stref; rys.: [5]
O wyborze prędkości wiatru i obciążenia dla miejscowości położonych przy granicy stref decyduje projektant, w zależności od lokalnych warunków terenowych i znaczenia projektowanego obiektu budowlanego [7]. Można dodać, że przygotowywana jest nowa mapa podziału Polski na strefy obciążenia wiatrem, która będzie zamieszczona w nowelizacji normy [5] w ramach wprowadzania Eurokodów 2. generacji.
Szczytowe ciśnienie prędkości wiatru, qp(z), uwzględniające wartość średnią i chwilowe fluktuacje prędkości wiatru, zależy przede wszystkim od:
- prędkości wiatru i rozpatrywanego kierunku jego działania,
- rodzaju (kategorii) terenu i przypisanej mu chropowatości,
- rzeźby terenu (orografii),
- gęstości powietrza w czasie silnego wiatru w określonych warunkach atmosferycznych.
Zmienia się ono wraz z wysokością nad poziomem terenu, zgodnie z pionowym profilem poziomej prędkości wiatru, przypisanym do danej kategorii terenu.
Pionowy profil prędkości wiatru w terenie płaskim może być charakteryzowany przez współczynnik chropowatości terenu, cr(z) albo przez współczynnik ekspozycji ce(z), przy czym wartości współczynnika chropowatości terenu wyznaczone wg zasadniczej części normy [5] i wg Załącznika krajowego NA do tej normy nieco różnią się od siebie. Inne jest także postępowanie prowadzące do wyznaczenia wartości szczytowej ciśnienia prędkości wiatru. Zaznaczono to ramką na schemacie pokazanym na RYS. 1. Dla porównania, w TABELI podano wartości szczytowego ciśnienia prędkości w 1. strefie obciążenia wiatrem, w zależności od kategorii terenu i wysokości nad poziomem gruntu, wyznaczone wg PN-EN 1991-1‑4:2008 i Załącznika krajowego NA [5].
TABELA. Wartości szczytowego ciśnienia prędkości w 1. strefie obciążenia wiatrem, w zależności od kategorii terenu i wysokości nad poziomem gruntu, wyznaczone wg PN-EN 1991-1-4:2008 i Załącznika krajowego NA [5]
EN – wartości obliczone wg zasad zawartych w zasadniczej części normy PN-EN 1991-1-4:2008
NA cr – wartości obliczone przy wykorzystaniu współczynnika chropowatości podanego w Załączniku krajowym NA do PN-EN 1991-1-4:2008
NA ce – wartości obliczone przy wykorzystaniu współczynnika ekspozycji podanego w Załączniku krajowym NA do PN-EN 1991-1-4:2008
Kolorem zaznaczono wartości największe na danej wysokości, w każdej kategorii terenu.
Wysokość odniesienia ze, dla której prowadzi się obliczenia (tj. przyjmując z = ze) ciśnienia wiatru na powierzchnie zewnętrzne ścian bocznych i zawietrznej (zatem na powierzchnie, gdzie występuje ssanie wiatru), zgodnie z normą [5] zaleca się przyjmować jako równą wysokości budynku. Można nadmienić, iż w dokumencie [8] przygotowującym nowelizację normy [5] podano, że jako wysokość odniesienia dla ściany zawietrznej i ścian bocznych należy przyjąć wysokość budynku w przypadku gdy ℎ ≤ 6 · b, natomiast gdy ℎ > 6 · b, przy ustalaniu wysokości odniesienia mogą być stosowane zasady jak dla ściany nawietrznej, tzn. z podziałem na kilka wysokości odniesienia.
Współczynniki ciśnienia zewnętrznego cpe należy przyjmować jako wartości dla powierzchni elementu równej 1 m2, tzn. stosując wartości cpe,1. W przypadku ścian bocznych wartość współczynnika ciśnienia zewnętrznego zależy od pola ściany. Zasady ich wydzielania pokazano na RYS. 4. Dotyczą one pionowych ścian budynków na rzucie prostokąta i z częściami takiej samej wysokości h. We wspomnianym dokumencie [8] podano przykłady ustalania pól ścian budynków wielobryłowych różnych wysokości i o rzucie niebędącym prostokątem. Przykład wydzielania pól na ścianach bocznych budynków z częściami różnych wysokości pokazano na RYS. 5–8.
RYS. 4. Oznaczenia ścian nawietrznej i zawietrznej oraz podział ścian bocznych na pola o różnej wartości współczynnika ciśnienia zewnętrznego w przypadku budynków na rzucie prostokąta; rys.: [5]
RYS. 5–8. Podział ścian bocznych na pola o różnej wartości współczynnika ciśnienia zewnętrznego w przypadku budynków na rzucie prostokąta i z częściami różnych wysokości: wycięcie bryły zawietrzne (5–6), wycięcie bryły nawietrzne (7–8); rys.: [8]
W normie [5] ani w dokumencie [8] nie podano wskazówek postępowania w sytuacji możliwego wystąpienia zjawisk lokalnych, np. tak zwanego efektu zwężki/lejka (ang. funnelling) przy ustawieniu budynków w określonej odległości od siebie. W tym zakresie można wykorzystać zapisy znajdujące się w Załączniku krajowym [9] do brytyjskiej wersji Eurokodu [5].
RYS. 9. Proponowany wpływ efektu zwężki na wartość współczynnika ciśnienia zewnętrznego w obszarach ściany A, B i C, z uwzględnieniem dokumentu [9] i normy [5]; rys.: M. Gaczek
Jeśli odległość a między budynkami mieści się w zakresie 0,25 · e < a < 1,0 · e, gdzie e jest wymiarem zdefiniowanym na RYS. 4 (w przypadku budynków o różnym e – wartość mniejsza), zwężenie spowoduje przyspieszenie przepływu powietrza i sprawi, że wartości współczynników ciśnienia zewnętrznego w skrajnych strefach ściany, objętych efektem zwężenia, będą bardziej niekorzystne niż w sytuacji budynku wydzielonego.
RYS. 10. Przykładowy układ budynków, między którymi może wystąpić efekt zwężki (lejka) [10]; rys.: M. Gaczek
Proponowane zmiany wartości współczynników ciśnienia zewnętrznego (ssania wiatru) w poszczególnych polach ściany bocznej, z uwzględnieniem zapisów zawartych w dokumencie [9] i w normie [5], pokazano na RYS. 9. Przykład położenia budynków, między którymi może wystąpić efekt zwężki, przedstawiono na RYS. 10, a orientacyjny podział ściany bocznej budynku dwubryłowego od strony budynku sąsiedniego, przy dwóch kierunkach wiatru powodujących możliwość przyspieszenia przepływu powietrza, pokazano na RYS. 11.
Znaczenie budynków sąsiednich przy ustalaniu tzw. wysokości przemieszczenia poziomu terenu, a także przy ustalaniu wysokości odniesienia ze, podano w normie [5] w załączniku A.
RYS. 11. Pola o różnej wartości współczynnika ciśnienia zewnętrznego na ścianie bocznej budynku od strony obiektu sąsiedniego z przykładu pokazanego na RYS. 10. W polach A1 i C1 może występować zwiększone podciśnienie w stosunku do pól A i C, w zależności od odległości obiektu sąsiedniego (RYS. 9); rys.: M. Gaczek
Wpływ wiatru na ocieplenie ścian
Wiatr, oddziałując na budynek, którego ściany zewnętrzne zostały ocieplone przy zastosowaniu ETICS i nieprawidłowo zamocowane, może powodować różne uszkodzenia tego systemu. Skala i rodzaj usterek są zależne od wysokości budynku, jego usytuowania, ekspozycji, otoczenia oraz kształtu i geometrii elewacji. Oczywiście kluczowa jest w takich przypadkach wartość oddziaływania wiatru, scharakteryzowanego w poprzednim punkcie artykułu.
Najbardziej niebezpiecznym skutkiem działania wiatru jest odrywanie ocieplenia od ściany. Taka destrukcja, widoczna i postrzegana jako gwałtowna i nagła utrata stateczności ocieplenia, przeważnie jest jednak konsekwencją dłuższego procesu.
Najczęściej uszkodzeniu ulegają ocieplenia, które zostały zarówno niewłaściwie przyklejone do podłoża, jak i niewłaściwie zamocowane mechanicznie, przy czym mocowanie łączniami mechanicznymi w takich przypadkach przeważnie było „dodatkowe”, a więc jego rola nie została uwzględniona w sposób adekwatny do stanu/jakości przyklejenia. Autorzy pisali o tym zjawisku we wcześniejszym artykule, opublikowanym w wydaniu „IZOLACJI” 10/2018 [1].
Kolejny problem związany ze źle przyklejonymi ociepleniami to niska odporność nie tylko na bezpośrednie odziaływanie ssania wiatru, lecz także na odziaływania termiczne wywołujące naprężenia na powierzchni elewacji oraz w samym materiale termoizolacyjnym.
Wieloletnie obserwacje i diagnostyka techniczna ociepleń wykonanych w technologii ETICS prowadzą również do wniosku, że bardzo często się zdarza, iż ocieplenia, które odpadły od ściany po silnym chwilowym działaniu wiatru, były już wcześniej częściowo odspojone na mniejszych albo większych obszarach. Były to nierzadko ocieplenia, które zrealizowano kilka albo nawet kilkanaście lat wcześniej.
Na szczęście można jednak stwierdzić, że mimo bardzo wielkiej skali, w jakiej od kilkudziesięciu lat realizuje się w Polsce ocieplanie budynków, przypadki odpadania ocieplenia od ściany stanowią bardzo niewielki odsetek.
Odziaływanie wiatru w sytuacji niewłaściwego zamocowania ocieplenia może również być przyczyną innych usterek, w konsekwencji których ocieplenie nie odpada od razu albo nawet nie odpada w ogóle. Do takich usterek należą relatywnie długie i rozwarte albo zaciśnięte (zależnie od umiejscowienia) zarysowania wierzchnich warstw ocieplenia, najczęściej powiązane z miejscowym i niewidocznym przy pobieżnej ocenie wzrokowej odspojeniem ocieplenia od ściany.
Na FOT. 1–3 przedstawiono przykład ocieplenia, którego pierwsze symptomy uszkodzenia związane z nieprawidłowym zamocowaniem zostały właściwie odczytane i ocieplenie to zostało czasowo zabezpieczone przed odpadnięciem, do czasu określenia dalszego postępowania.
FOT. 1–3. Przykład ocieplenia czasowo zabezpieczonego przed odpadnięciem po wystąpieniu pierwszych symptomów uszkodzenia; fot.: P. Gaciek
Na kolejnych fotografiach (FOT. 4–6) pokazano uszkodzenia elewacji powstałe podczas działania silnego wiatru, choć przyznać należy z całą stanowczością, że w każdym z takich przypadków przyczyną było nie tylko nadzwyczajne odziaływanie wiatru, lecz także, a może przede wszystkim, błędy w zamocowaniu ocieplenia, które ujawniły się podczas oddziaływań środowiskowych.
FOT. 4. Przykładowe uszkodzenia elewacji budynków w wyniku oddziaływania wiatru, będące konsekwencją popełnionych błędów mocowania ocieplenia; fot.: P. Gaciek
FOT. 5. Przykładowe uszkodzenia elewacji budynków w wyniku oddziaływania wiatru, będące konsekwencją popełnionych błędów mocowania ocieplenia; fot.: P. Gaciek
FOT. 6. Przykładowe uszkodzenia elewacji budynków w wyniku oddziaływania wiatru, będące konsekwencją popełnionych błędów mocowania ocieplenia; fot.: P. Gaciek
Rozpatrując wyłącznie mechaniczne mocowanie systemów ociepleń, należy podkreślić dwie podstawowe właściwości i cechy materiałów oraz połączeń występujących w systemie, które brane są pod uwagę w obliczeniach zamocowania ocieplenia, czyli przy wyznaczaniu liczby łączników na 1 m2. Są to:
- wyrywanie łączników z podłoża i przeciąganie ich przez ocieplenie albo
- przeciąganie ocieplenia przez łączniki – zależnie od metody badania.
W artykule [2] autorzy bardziej szczegółowo opisali obie właściwości. Jest również trzecia właściwość, której wpływ jest intuicyjnie traktowany jako mniejszy niż wcześniej wymienione – przemieszczenie pod wpływem siły wyrywającej. Trwają prace nad określeniem realnego wpływu tego parametru na bezpieczeństwo zamocowania mechanicznego ociepleń, a w zasadzie na wyniki obliczeń liczby łączników na 1 m2 ocieplenia.
W niektórych krajach Europy są już przyjęte poziomy graniczne przemieszczenia. Kalkulator łączników SSO również obejmuje zasygnalizowaną właściwość.
Cechy materiałów i połączeń mające wpływ na nośność ETICS przy oddziaływaniu wiatru
Zgodnie z wytycznymi zawartymi w dokumentach „Warunki oceny właściwości użytkowych wyrobu budowlanego” WO-KOT/04/01 [11] i WO-KOT/04/02 [12], stanowiącymi w Polsce podstawę do wydawania między innymi Krajowych Ocen Technicznych dla systemów ociepleń ETICS, termoizolacja ma przypisane pewne cechy również mechaniczne, jakie producent powinien zadeklarować. Obecnie najważniejszy pod tym względem jest parametr oznaczany w kodzie normowym termoizolacji jako TR – można potocznie i obrazowo powiedzieć – odporność termoizolacji na rozrywanie siłą prostopadłą do powierzchni czołowych. Wartość tej siły w pewnym przybliżeniu jest informacją o „spoistości” materiału termoizolacyjnego, co przekłada się również na wspomniany już opór, jaki termoizolacja stawia podczas przeciągania przez łącznik albo łącznika przez termoizolację, zależnie od metody badania.
Analiza modelu zrywania oraz tzw. obraz zerwania zdaniem autorów prowadzą również do wniosku, że dla wartości przeciągania istotna jest także odporność termoizolacji na ściskanie przy 10-procentowym odkształceniu, oznaczona w kodzie normowym termoizolacji jako CS(10), której deklarowanie w przypadku materiałów do izolacji cieplnej ociepleń ścian (fasad) nie jest obowiązkowe.
Jak łatwo się domyśleć, istotny wpływ na opór podczas przeciągania ma również grubość materiału termoizolacyjnego, oczywiście w pewnym zakresie (przedziale grubości), w którym łącznik mechaniczny zachowuje swoje deklarowane i przewidywalne parametry związane ze sztywnością talerzyka oraz wytrzymałością na zerwanie, względnie deformacje talerzyka.
Powyższe stwierdzenia dotyczą mocowania mechanicznego bezpośrednio przez materiał termoizolacyjny standardowym sposobem i łącznikami.
Istnieje również sposób mocowania przez warstwę zbrojoną, ale wówczas wyżej opisane prawidłowości nie mają zastosowania, a liczy się wynik badania konkretnego układu z określonymi warstwami i rodzajem łączników.
Należy raz jeszcze podkreślić, że nośność systemu ociepleniowego na przeciąganie związana jest ściśle z rodzajem termoizolacji, jej grubością i parametrami łącznika mechanicznego. Wyższe nośności przy tej samej grubości płyt uzyskuje się w przypadku styropianu (EPS), a niższe w przypadku wełny mineralnej (MW).
Istotnie różne są także obrazy zrywania. Na FOT. 7–12 pokazano, jak wygląda obraz zerwania wełny mineralnej (FOT. 7) i styropianu o różnej grubości (FOT. 8–12) w badaniu jednej płyty, wzorowanym na statycznej metodzie odziaływania blokiem piankowym.
FOT. 7–8. Obrazy zrywania przy próbie przeciągania płyty z materiału termoizolacyjnego przez łączniki mechaniczne: wełna mineralna (7), styropian tradycyjny (8); fot.: P. Gaciek
FOT. 9. Obrazy zrywania przy próbie przeciągania płyty z materiału termoizolacyjnego przez łączniki mechaniczne: styropian grafitowy gr. 9 cm; fot.: P. Gaciek
FOT. 10–11. Obrazy zrywania przy próbie przeciągania płyty z materiału termoizolacyjnego przez łączniki mechaniczne: styropian grafitowy gr. 9 cm (10), styropian grafitowy gr. 5 cm (11); fot.: P. Gaciek
Jak widać, w przypadku styropianu forma zerwania jest dość regularna, zbliżona do bryły stożka ściętego, którego wysokość i średnica podstawy zależy od spoistości EPS oraz grubości płyty.
Mniej regularne efekty daje przeciąganie wełny mineralnej, co tłumaczy włóknista struktura tego materiału.
Wartości określające siły niszczące dla konkretnych grubości i materiałów można odczytać z ETA i KOT, wydanych dla systemu ociepleń. Należy jednak zwrócić uwagę, jakich używano łączników mechanicznych i jakie grubości termoizolacji badano.
Zarówno w przypadku EPS, jak i MW, zależnie od metody badania, najczęściej mamy do czynienia z wartościami przeciągania z usytuowaniem łącznika w polu płyty (Rpanel) i w łączeniach płyt (Rjoint). W przypadku zaś wełny mineralnej rozpatrywane są wartości wspominanych sił także dla warunków suchych i mokrych (forma kondycjonowania). Obecnie podawane są wartości średnie i minimalne z badania.
Wartości uzyskiwane w łączeniu płyt są co do zasady mniejsze od mocowania w polu płyty. To oczywiście tłumaczy brak ciągłości termoizolacji w tych miejscach mocowania. Zasadniczo niższe wartości przeciągania uzyskuje się również w przypadku wełny mineralnej badanej w warunkach mokrych.
Drugim bardzo ważnym parametrem związanym z projektowaniem mechanicznego zamocowania ocieplenia jest wyrywanie łącznika z podłoża. W instrukcji ETA (najczęściej spotykanym dokumencie w przypadku łączników), wydanej dla konkretnego łącznika mechanicznego, znajdziemy wartości charakterystyczne nośności na wyrywanie (NRk) z typowych podłoży budowlanych, obejmujących w zasadzie większość tych, które można spotkać, chociaż w przypadku tłumaczenia dokumentu z języka obcego czasami występują trudności w interpretacji nazwy materiału.
W przypadku, kiedy mamy wątpliwości lub podłoże nie jest jednoznacznie zidentyfikowane, można wykonać serię badań polegających na wyrywaniu łączników z podłoża urządzeniem typu pull-off oraz wyliczyć wartość charakterystyczną nośności.
Procedura dotycząca zrywania oraz obliczania, wynikająca z wytycznych EOTA zawartych w Raporcie Technicznym TR 051 (wersja kwiecień 2018) [13], wskazuje na wykonanie 15 prób, z czego wybiera się 5 najniższych wyników, a po obliczeniu z nich średniej mnoży się uzyskany wynik przez współczynnik 0,6. Uzyskana w ten sposób wartość NRk nie może być przyjmowana powyżej 1,5 kN, nawet jeśli taki wynik uzyskamy z obliczenia.
Sposób przeprowadzenia próby wyrywania łącznika z podłoża i przykładowe urządzenie pokazano na FOT. 12. Należy zadbać, aby wyrywanie było prostopadłe do powierzchni ściany.
Podsumowanie
Kluczowe dla prawidłowego przeprowadzenia obliczenia zamocowania mechanicznego jest wyznaczenie sił odziaływania wiatru na poszczególne ściany i ich strefy/pola, co przedstawiono w pierwszej części artykułu.
Kolejny ważny etap to określenie nośności systemu ociepleń na przeciąganie oraz określenie nośności łącznika mechanicznego na wyrywanie z danego podłoża. Ze schematu rozmieszczenia łączników, czyli usytuowania ich względem pola płyty termoizolacji oraz łączenia płyt, wyniknie, jakie wartości przeciągania można przyjąć na poszczególne łączniki przy projektowaniu. Pozostaje wyznaczenie ilości łączników na 1 m2 ocieplenia – służy do tego Kalkulator łączników SSO. W kolejnym artykule z serii mocowania ociepleń ETICS zostaną zaprezentowane przykłady obliczeniowe.
Literatura
1. P. Gaciek, M. Gaczek, M. Garecki, „Sposoby mocowania ociepleń do powierzchni ścian według technologii ETICS”, „Izolacje” 10/2018, s. 20–22.
2. P. Gaciek, M. Gaczek, M. Garecki, „Mechaniczne mocowanie systemów ocieplania ścian ETICS – podstawowe założenia, cechy i funkcje łączników mechanicznych oraz systemów ociepleń”, „Izolacje” 2/2019, s. 19–24.
3. M. Gaczek, P. Gaciek, M. Garecki, „Mechaniczne mocowanie systemów ocieplania ścian ETICS – podstawy obliczania z uwagi na oddziaływanie wiatru”, „Izolacje” 9/2019, s. 34, 36–38, 40.
4. M. Gaczek, „Kalkulator Łączników SSO, Stowarzyszenie na Rzecz Systemów Ociepleń”, 2018, http://www.systemyocieplen.pl/
5. PN-EN 1991-1-4:2008 Eurokod 1: Oddziaływania na konstrukcje. Część 1–4: Oddziaływania ogólne – Oddziaływania wiatru.
6. M. Gaczek, „Oddziaływanie wiatru na dachy budynków”, „Materiały Budowlane” 6/2019, s. 6–9.
7. J.A. Żurański, „Obciążenia wiatrem budowli i konstrukcji”, Arkady, Warszawa 1978.
8. CEN/TC 250/SC 1 N 1512, „Eurocode 1 – Actions on structures – Part 1–4: General actions – Wind actions”, Final draft (updated): April 2020.
9. NA to BS EN 1991-1-4:2005+A1:2010 UK, „National Annex to Eurocode 1 – Actions on structures – Part 1-4: General actions – Wind actions”.
10. Irish National Annex to I.S. EN1991-1-4, „Wind Load Calibration Study, Department of the Environment”, Arup Consulting Engineers, Issue 2, 16 December 2009.
11. „Warunki Oceny Właściwości Użytkowych Wyrobu Budowlanego/WO-KOT/04/01, wyd. 1 – Złożone zestawy izolacji cieplnej z wyprawami tynkarskimi (ETICS) z zastosowaniem wyrobów z wełny mineralnej (MW)”, ITB, Warszawa 2018.
12. „Warunki Oceny Właściwości Użytkowych Wyrobu Budowlanego/WO-KOT/04/02, wyd. 1 – Złożone zestawy izolacji cieplnej z wyprawami tynkarskimi (ETICS) z zastosowaniem wyrobów ze styropianu (EPS)”, ITB, Warszawa 2018.
13. EOTA TR 51, „Recommendations for job-site tests of plastic anchors and screws”, European Organization for Technical Assessment, 2018.