Izolacje.com.pl

Zaawansowane wyszukiwanie

Zdolność izolowania temperatur pożarowych w zależności od gęstości i grubości wełny mineralnej

Ability to insulate fire temperatures depending on the density and thickness of mineral wool

Widok próbki nr 3 po badaniu, fot. P. Sulik, N. Śmigielski

Widok próbki nr 3 po badaniu, fot. P. Sulik, N. Śmigielski

W bezpieczeństwie pożarowym stosuje się szereg rozwiązań zapewniających oczekiwany stopień niezawodności i bezpieczeństwa w przypadku powstania pożaru.

Zobacz także

Fiberglass Fabrics sp. z o.o. Tynki i farby w dużych inwestycjach budowlanych

Tynki i farby w dużych inwestycjach budowlanych Tynki i farby w dużych inwestycjach budowlanych

Przy projektowaniu i realizacji dużych inwestycji, takich jak osiedla mieszkaniowe, biurowce czy obiekty użyteczności publicznej, kluczowe znaczenie ma wybór odpowiednich materiałów wykończeniowych. Nie...

Przy projektowaniu i realizacji dużych inwestycji, takich jak osiedla mieszkaniowe, biurowce czy obiekty użyteczności publicznej, kluczowe znaczenie ma wybór odpowiednich materiałów wykończeniowych. Nie do przecenienia jest rola tynków i farb, które wpływają na wygląd budynków, a także na ich trwałość i komfort użytkowania.

Connector.pl Nowoczesne piany poliuretanowe – szczelne i trwałe ocieplenie budynku

Nowoczesne piany poliuretanowe – szczelne i trwałe ocieplenie budynku Nowoczesne piany poliuretanowe – szczelne i trwałe ocieplenie budynku

Firma Connector.pl to największy polski dystrybutor materiałów do produkcji kompozytów, będący liderem na rynku od ponad 30 lat. W swojej ofercie posiadamy szeroką gamę produktów, a wśród nich znakomitej...

Firma Connector.pl to największy polski dystrybutor materiałów do produkcji kompozytów, będący liderem na rynku od ponad 30 lat. W swojej ofercie posiadamy szeroką gamę produktów, a wśród nich znakomitej jakości piany PUR otwarto- i zamkniętokomórkowe.

Czytaj całość »
Czy piana poliuretanowa jest palna? Czy piana poliuretanowa jest palna?

M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.

W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.

Czytaj całość »

Przykładem takich rozwiązań są bierne [ 1 ] i czynne (aktywne) systemy zabezpieczeń przeciwpożarowych [ 2 ]. Wśród tych pierwszych możemy wyróżnić tzw. ogniochronne izolacje techniczne [ 38 ], uszczelnienia przejść instalacyjnych [ 912 ] czy uszczelnienia złączy liniowych [ 1314 ], do których wykonania wykorzystuje się szereg specjalistycznych materiałów, przeznaczonych do konkretnych zastosowań. Dotyczy to zarówno sprofilowanych farb czy natrysków, jak i płyt, w tym gipsowo-kartonowych, gipsowo-włóknowych, silikatowo-cementowych lub silikatowo-wapniowych, oraz okładzin z wełny mineralnej.

Większość osób dostrzega różnicę między płytą gipsowo-kartonową typ A a typ DF i poprawnie, jednoznacznie identyfikuje płytę DF jako przeznaczoną do zastosowań ogniowych, pomimo że płyta typu A, również charakteryzuje się określonymi właściwościami w zakresie izolowania temperatur pożarowych. Podobne założenia można przypisać również wełnie mineralnej.

Powszechnie wysokie gęstości wełny mineralnej kojarzymy z biernymi zabezpieczeniami ogniochronnymi, ale warto sobie zadać pytanie, jak zachowa się wełna mineralna o niższej gęstości? Odpowiedź m.in. na to pytanie sformułowano w artykule.

O czym przeczytasz w artykule:

  • Materiały i metoda badania
  • Wyniki i dyskusja
  • Podsumowanie

W artykule przedstawiona została ocena skuteczności izolowania temperatur pożarowych przez wełnę mineralną na podstawie jej gęstości oraz grubości izolacji. Na potrzeby badań w warunkach pożarowych przeprowadzono eksperyment, w którym badaniu poddano dziewięć rodzajów skalnej wełny mineralnej o różnej deklarowanej gęstości.

Ability to insulate fire temperatures depending on the density and thickness of mineral wool

The article presents the assessment of the effectiveness of fire temperatures isolation by mineral wool on the basis of its density and thickness of the insulation. For the purpose of testing in fire conditions, an experiment was carried out in which nine types of rock mineral wool with different declared density were tested.

Materiały i metoda badania

W celu weryfikacji zachowania wełny mineralnej w warunkach pożarowych przeprowadzono eksperyment, w którym badaniu poddano dziewięć rodzajów skalnej wełny mineralnej o różnej deklarowanej gęstości, poczynając od 28 kg/m3, a kończąc na 170 kg/m3.

Płyty z wełny mineralnej zostały ułożone warstwowo, w czterech warstwach gr. 50 mm lub dwóch warstwach gr. 100 mm w przypadku, gdy dany rodzaj wełny mineralnej nie występował w mniejszych grubościach niż 100 mm (np. próbka S7).

Poszczególne warstwy miały wymiary nieco powyżej 50x50 cm i były szczelnie wciśnięte w otwory o wymiarach 50x50 cm, wykonane w ścianie z betonu komórkowego odmiany 600 kg/m3, gr. 240 mm.

Od strony ognia otwór był osłonięty przez blachę stalową, ocynkowaną gr. 0,5 mm i wymiarach 70x70 cm, mocowaną łącznikami mechanicznymi do muru, natomiast od strony nienagrzewanej otwór osłonięto płytą gipsowo-kartonową, gr. 12,5 mm, o wymiarach 70x70 cm, również mocowaną do muru łącznikami mechanicznymi.

Pomiędzy poszczególnymi warstwami wełny mineralnej oraz na blasze stalowej od strony wełny mineralnej i płycie gipsowo-kartonowej zamocowano po dwie termopary typ K, zgodne z normą PN-EN 1363-1, umożliwiające w sposób ciągły pomiar temperatury w czasie. Szczegóły przedstawiono na FOT. 16.

fot1 6 temperatury pozarowe

FOT. 1–6. Fazy montażu elementu nr 1; fot.: P. Sulik, N. Śmigielski

Płyty z wełny mineralnej przed badaniem były klimatyzowane w warunkach laboratoryjnych przez ponad 30 dni. Przed samym badaniem wszystkie wycięte na wymiar płyty zostały zważone i na podstawie tych pomiarów wyliczono rzeczywistą gęstość zastosowanej w badaniach wełny mineralnej.

Nagrzewanie przeprowadzono zgodnie z krzywą standardową, a więc krzywą, do której odwołują się Warunki Techniczne [ 15 ] w zakresie odporności ogniowej. Wszystkie otwory, w których znajdowały się próbki do badań, położone były w zakresie działania ciśnienia dodatniego (nadciśnienie). Widok elementów próbnych w trakcie badania przedstawiono na FOT. 710.

fot7 10 temperatury pozarowe

FOT. 7–10. Widok elementów próbnych zabezpieczonych płytą gipsowo-kartonową od strony nienagrzewanej przed badaniem, w 61., 103. oraz 151. minucie badania; fot.: P. Sulik, N. Śmigielski

Podobne badania, oceniające zachowanie wełny mineralnej w pożarze, jednak w mniejszej skali i przy zmiennym strumieniu ciepła promieniowania, od 7 kW/m2, przez 60 kW/m2 do krzywej standardowej ISO 834 przedstawiono w pracy [ 16 ].

Wyniki i dyskusja

Wyniki badań, zrealizowanych w ramach pracy NZP-136, dla dwóch grubości wełny mineralnej przedstawiono na RYS. 1–2, a widok przykładowej próbki po badaniu zobrazowano na FOT. 11–16.

rys1 temperatury pozarowe

RYS. 1. Zależność przyrostu temperatury w czasie dla poszczególnych elementów badawczych o grubości 100 mm; rys.: P. Sulik, N. Śmigielski

rys2 temperatury pozarowe

RYS. 2. Zależność przyrostu temperatury w czasie dla poszczególnych elementów badawczych o grubości 200 mm; rys.: P. Sulik, N. Śmigielski

Analiza wyników przedstawionych na RYS. 1 w większości przypadków potwierdza lepszą izolacyjność ogniową wełny o wyższej gęstości.

fot11 16 temperatury pozarowe

FOT. 11–16. Widok próbki nr 3 po badaniu – wybrane elementy; fot.: P. Sulik, N. Śmigielski

W przypadku wełen o gęstości do 100 kg/m3 wyraźnie widać, że po przekroczeniu pewnej półki, gdy przyrost temperatury oscyluje wokół +50K, co odpowiada rzeczywistej temperaturze rzędu 70°C, po kilku–kilkunastu minutach następuje szybki przyrost temperatury w czasie do wartości około 500–600°C. Im niższa gęstość wełny mineralnej, tym długość płaskiej półki jest krótsza i bardziej ostry wzrost temperatury.

W przypadku wełen mineralnych o gęstości powyżej 100 kg/m3 zasięg płaskiej półki jest już znacznie większy, od 25 do 35 min, a potem wzrost temperatury ma łagodniejszy charakter.

Zakładając jako bezpieczny przyrost temperatury nieprzekraczający 200K w stosunku do temperatury początkowej, a więc o 20K wyższy od maksymalnej temperatury w kryterium izolacyjności ogniowej, wyraźnie widać, że wełny stosowane np. do izolowania ścian w fasadach wentylowanych, a więc o gęstości od 45 do 80 kg/m3, przy grubości 100 mm, zapewniają spełnienie warunków w przedziale od 12 do 21 min, podczas gdy wełny o gęstości z przedziału 150–160 kg/m3 gwarantują nieprzekroczenie tej temperatury przez 45–50 min.

Odmienny charakter mają wykresy w przypadku wełny mineralnej gr. 200 mm. W tym przypadku wykres przyrostów temperatury jest bardziej wypłaszczony, nawet w przypadku wełny o gęstości około 30 kg/m3, przy czym dla tej próbki, po przekroczeniu 75. min, przyrosty temperatur są szybsze.

W przypadku pozostałych wełen, z pojedynczymi wyjątkami, poczynając od gęstości około 50 kg/m3, przebieg wykresów wskazuje, że ich zachowanie gwarantuje izolacyjność ogniową po 150 min na poziomie nieprzekraczającym przyrostów temperatury 200K. Oczywiście również w tym przypadku wełny mineralne o wyższych gęstościach zachowują się nieco lepiej, niemniej nie istnieje już taka ich duża przewaga jak dla mniejszych grubości.

Podsumowanie

Przedstawiona ocena skuteczności izolowania temperatur pożarowych przez wełnę mineralną na podstawie jej gęstości oraz grubości izolacji ma charakter inżynierski. Nie uwzględnia on wielu aspektów, np. budowy wełny, zawartości poszczególnych składników, w tym materii organicznej, która w trakcie nagrzewania przechodzi egzotermiczne reakcje oksydacyjne wywołujące transport masy w strukturze wełny mineralnej [ 17 ], układu włókien itp. Nie oznacza to jednak, że ocena „dzielności” wełny w izolowaniu temperatur pożarowych na podstawie dostępnych na budowie parametrów, łatwych do zweryfikowania, a więc grubości i gęstości, prowadzi do błędnych wniosków.

W artykule przedstawiono wyniki dla wybranych gęstości skalnych wełen mineralnych, podczas gdy w pracy NZP-136 przebadano prawie 30 rodzajów wełny mineralnej dostępnej na rynku, uwzględniając różnorakie jej zastosowanie, w tym oprócz typowych jak ściana, dach, zabezpieczenia elementów konstrukcyjnych, również te bardziej egzotyczne, jak np. wełna kominkowa czy wełna szklana.

Badania na szerszej grupie wyrobów potwierdziły podane w artykule spostrzeżenia, które pozwalają na pewien wniosek generalny. W przypadku, kiedy z przyczyn technologicznych grubość izolacji termicznej musi być ograniczona, najlepszym rozwiązaniem w przypadku wełny mineralnej jest stosowanie wełen o wysokiej gęstości, do zastosowań technicznych, które gwarantują wyższy poziom izolacyjności ogniowej.

W przypadku, kiedy grubość izolacji nie jest ograniczona i można zastosować izolacje gr. np. 20 cm, warto rozważyć zastosowanie typowych, mineralnych wełen budowlanych, o niższej gęstości, które jak wykazały badania, również są w stanie zapewnić wymagany poziom bezpieczeństwa.

Literatura

1. P. Sulik, P. Turkowski, W. Węgrzyński, B. Sędłak, P. Roszkowski, G. Krajewski, „Bezpieczeństwo pożarowe podziemnej infrastruktury transportowej cz. 1. Pasywne systemy zabezpieczeń”, „Inżynieria kolejowa – szanse i wyzwania”, 64. Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN oraz Komitetu Nauki PZITB, 2018, s. 291–316.
 2. W. Węgrzyński, P. Sulik, G. Krajewski, P. Antosiewicz, „Bezpieczeństwo pożarowe podziemnej infrastruktury transportowej cz. 2. Aktywne systemy zabezpieczeń”, „Inżynieria kolejowa – szanse i wyzwania”, 64. Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN oraz Komitetu Nauki PZITB, 2018, s. 317–330.
 3. H.L. Vandersall, „Intumescent coating systems, their development and chemistry”, „J. Fire Flammability” 2/1971, p. 97–140.
 4. P. Mather, „Saving lives with coatings”, „Eur Coating J” 48/2006, p. 50–52.
 5. M. Jimenez, S. Duquense, S. Bourbigot, „Multiscale experimental approach for developing high-performance intumescent coatings”, „Ind Eng Chem Res” 45/2006, p. 4500–4508.
 6. T. Mariappan, „Recent developments of intumescent fire protection coating for structural steel: A review”, „Journal of Fire Sciences” vol. 34(2)/2016, p. 120–163.
 7. P. Sulik, „Bierne zabezpieczenia przeciwpożarowe konstrukcji”, „IZOLACJE” 3/2018, s. 118–124.
 8. I. Gajecka-Graniczna, P. Sulik, „Weryfikacja ogniochronnych powłok malarskich”, „IZOLACJE” 5/2018, s. 74–80.
 9. B. Sędłak, „Porównanie skuteczności działania opasek i kołnierzy ogniochronnych z materiałami pęczniejącymi”, „IZOLACJE” 11–12/2013, s. 63–68.
10. P. Sulik, B. Sędłak, „Badanie odporności ogniowej dużych mieszanych uszczelnień przejść instalacyjnych”, „Materiały Budowlane” 7/2014, s. 20–22.
11. Ł. Fejfer, P. Sulik, „Wymagania dotyczące bezpieczeństwa pożarowego przejść instalacyjnych”, „Materiały Budowlane” 6/2018, s. 53–55.
12. W. Joniec, „Przepusty i piony instalacyjne”, „IZOLACJE” 3/2020, s. 78–81.
13. B. Sędłak, P. Roszkowski, „Izolacyjność ogniowa uszczelnień złączy liniowych w zależności od głębokości i szerokości złącza”, „IZOLACJE” 10/2015, s. 58–63.
14. B. Sędłak, J. Kinowski, P. Roszkowski, P. Sulik, „Uszczelnienia złączy liniowych z mechanicznie wywołanym przemieszczeniem powierzchni czołowych złącza”, „Materiały Budowlane” 7/2017, s. 20–23.
15. Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2015 r., poz. 1422 i z 2017 r., poz. 2285).
16. B. Andres, K. Livkiss, J.P. Hidalgo, P. Van Hees, L. Bisby, N. Johansson, A. Bhargava, „Response of stone wool–insulated building barriers under severe heating exposures”, „J Fire Sci” 36(4)/2018, p. 315–341.
17. D. Paudel, A. Rinta-Paavola, H.P. Mattila, S. Hostikka, „Multiphysics Modelling of Stone Wool Fire Resistance”, „Fire Technology” 2020, https://doi.org/10.1007/s10694-020-01050-5.

Chcesz być na bieżąco? Zapisz się do naszego newslettera!

Powiązane

dr inż. Gerard Brzózka Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Propozycja modyfikacji projektowania rezonansowych układów pochłaniających Propozycja modyfikacji projektowania rezonansowych układów pochłaniających

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej...

Podstawy do projektowania rezonansowych układów pochłaniających zostały zaproponowane w odniesieniu do rezonatorów komorowych perforowanych i szczelinowych przez Smithsa i Kostena już w 1951 r. [1]. Jej szeroką interpretację w polskiej literaturze przedstawili profesorowie Sadowski i Żyszkowski [2, 3]. Pewną uciążliwość tej propozycji stanowiła konieczność korzystania z nomogramów, co determinuje stosunkowo małą dokładność.

Czytaj całość »
Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Adrian Hołub Uszkodzenia stropów – monitoring przemieszczeń, ugięć i spękań

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne...

Corocznie słyszymy o katastrofach budowlanych związanych z zawaleniem stropów w budynkach o różnej funkcjonalności. Przed wystąpieniem o roszczenia do wykonawcy w odniesieniu do uszkodzeń stropu niezbędne jest określenie, co było przyczyną destrukcji. Często jest to nie jeden, a zespół czynników nakładających się na siebie. Ważne jest zbadanie, czy błędy powstały na etapie projektowania, wykonawstwa czy nieprawidłowego użytkowania.

Czytaj całość »

mgr inż. Cezariusz Magott, mgr inż. Maciej Rokiel Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego Analiza dokumentacji technicznej prac renowacyjnych (cz. 4). Uszczelnienia typu wannowego

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów...

W przypadku izolacji typu wannowego trzeba zwrócić szczególną uwagę na stan przegród. Chodzi o stan powierzchni oraz wilgotność. Jeżeli do budowy ścian fundamentowych piwnic nie zastosowano materiałów całkowicie nieodpornych na wilgoć (np. beton komórkowy), to nie powinno być problemów związanych z bezpieczeństwem budynku, chociaż rozwiązanie z zewnętrzną powłoką uszczelniającą jest o wiele bardziej korzystne.

Wybrane dla Ciebie

Źródło OZE z dopłatą 50% »

Źródło OZE z dopłatą 50% » Źródło OZE z dopłatą 50% »

Łatwa hydroizolacja skomplikowanych powierzchni dachowych »

Łatwa hydroizolacja skomplikowanych powierzchni dachowych » Łatwa hydroizolacja skomplikowanych powierzchni dachowych »

Docieplanie budynków to nie problem »

Docieplanie budynków to nie problem » Docieplanie budynków to nie problem »

Trwały kolor tynku? To możliwe! »

Trwały kolor tynku? To możliwe! » Trwały kolor tynku? To możliwe! »

Piany poliuretanowe, otwartokomórkowe »

Piany poliuretanowe, otwartokomórkowe » Piany poliuretanowe, otwartokomórkowe »

Zatrzymaj cenne ciepło wewnątrz »

Zatrzymaj cenne ciepło wewnątrz » Zatrzymaj cenne ciepło wewnątrz »

EKOdachy spadziste »

EKOdachy spadziste » EKOdachy spadziste »

Skuteczna walka z wilgocią w ścianach »

Skuteczna walka z wilgocią w ścianach » Skuteczna walka z wilgocią w ścianach »

Trwałe drzwi na zewnątrz i do wnętrz »

Trwałe drzwi na zewnątrz i do wnętrz » Trwałe drzwi na zewnątrz i do wnętrz »

Oszczędzanie przez ocieplanie »

Oszczędzanie przez ocieplanie » Oszczędzanie przez ocieplanie »

Trwała ochrona betonu »

Trwała ochrona betonu » Trwała ochrona betonu »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka » Prawidłowe wykonanie elewacji w systemie ETICS to jakość, żywotność i estetyka »

Copyright © 2004-2019 Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Spółka komandytowa, nr KRS: 0000537655. Wszelkie prawa, w tym Autora, Wydawcy i Producenta bazy danych zastrzeżone. Jakiekolwiek dalsze rozpowszechnianie artykułów zabronione. Korzystanie z serwisu i zamieszczonych w nim utworów i danych wyłącznie na zasadach określonych w Zasadach korzystania z serwisu.
Portal Budowlany - Izolacje.com.pl

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim urządzeniu końcowym. W każdym momencie możesz dokonać zmiany ustawień przeglądarki dotyczących cookies. Nim Państwo zaczną korzystać z naszego serwisu prosimy o zapoznanie się z naszą polityką prywatności oraz Informacją o Cookies. Więcej szczegółów w naszej Polityce Prywatności oraz Informacji o Cookies. Administratorem Państwa danych osobowych jest Grupa MEDIUM Spółka z ograniczoną odpowiedzialnością Sp.K., nr KRS: 0000537655, z siedzibą w 04-112 Warszawa, ul. Karczewska 18, tel. +48 22 810-21-24, właściciel strony www.izolacje.com.pl. Twoje Dane Osobowe będą chronione zgodnie z wytycznymi polityki prywatności www.izolacje.com.pl oraz zgodnie z Rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016r i z Ustawą o ochronie danych osobowych Dz.U. 2018 poz. 1000 z dnia 10 maja 2018r.