Wykonywanie systemów ociepleń ETICS na zawilgoconych budynkach
Application of etics insulation systems on damp buildings
Obecny wygląd ocieplonych przed 20 laty elewacji Instytutu Designu w kielcach; kwiecień 2022 r.; fot.: M. Garecki
Prowadzone od wielu lat rewitalizacje, remonty, przebudowy i rozbudowy istniejących budynków nieodłącznie powiązane są z kwestiami podniesienia ich efektywności energetycznej, oczywiście w miarę możliwości. Dotyczy to zarówno obiektów wpisanych do rejestru zabytków, jak i tych, które znajdują się w strefach ochrony konserwatorskiej i poza nimi. Systematyczny wzrost cen nośników energii, a na przestrzeni ostatniego roku – wzrost wręcz lawinowy, będzie wymuszał na inwestorach konieczność instalacji m.in. systemów ociepleń ścian zewnętrznych budynków (ETICS).
Zobacz także
M.B. Market Ltd. Sp. z o.o. Czy piana poliuretanowa jest palna?
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
W artykule chcielibyśmy przyjrzeć się bliżej temu aspektowi i rozwiać wszelkie wątpliwości na temat palności pian poliuretanowych.
Ultrapur Sp. z o.o. Pianka poliuretanowa a szczelność budynku
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który...
Wielu inwestorów, wybierając materiał do ocieplenia domu, kieruje się głównie parametrem lambda, czyli wartością współczynnika przewodzenia ciepła. Jest on jedynym zestandaryzowanym współczynnikiem, który określa właściwości izolacyjne materiału. Jednocześnie jest współczynnikiem wysoce niedoskonałym – określa, jak dany materiał może opierać się utracie ciepła poprzez przewodzenie.
Rockwool Polska Termomodernizacja domu – na czym polega i jak ją zaplanować?
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw...
Termomodernizacja to szereg działań mających na celu poprawę energochłonności Twojego domu. Niezależnie od zakresu inwestycji, kluczowa dla osiągnięcia spodziewanych efektów jest kolejność prac. Najpierw należy docieplić ściany i dach, aby ograniczyć zużycie energii, a dopiero potem zmodernizować system grzewczy. Dzięki kompleksowej termomodernizacji domu prawidłowo wykonanej znacznie zmniejszysz koszty utrzymania budynku.
O czym przeczytasz w artykule:
|
W artykule wskazano na istotną rolę diagnostyki koniecznej do przeprowadzenia przy remontach i ocieplaniu obiektów zawilgoconych lub zagrożonych zawilgoceniem. Wskazano również, z jakimi zagrożeniami trzeba się liczyć, gdy nie wykona się tego typu prac. Przedstawiony przykład przeprowadzenia udanych prac izolacyjno-remontowych dużego, zabytkowego obiektu wskazuje, że przy właściwym programowaniu i kontroli robót instalacja systemów ociepleń ETICS jest jak najbardziej możliwa, nawet przy występującej wcześniej silnej degradacji substancji budowlanej oraz silnym zawilgoceniu murów. Application of etics insulation systems on damp buildingsThe article indicates the important role of diagnostics necessary to carry out renovation and insulation of damp buildings or the ones at risk of dampness. It also points out at the possible risks in the case of failure to perform this type of work. The presented example of successful insulation and renovation work of a large historic building shows that with proper programming and control of work the application of ETICS insulation systems is very much possible, even with previously occurring strong degradation of the building substance and serious dampness of walls.
|
W przypadku starego budownictwa podlegającego ochronie instalacja systemu ETICS jest oczywiście możliwa wyłącznie po uzyskaniu zgody służb konserwatorskich. Jednak zdecydowana większość starszych obiektów, w tym budownictwa indywidualnego, uzyskania takiej zgody nie wymaga. Droga do uzyskania wyższych standardów energetycznych oraz obniżenia kosztów eksploatacyjnych wydaje się być zatem względnie prosta.
Na co trzeba jednak zwrócić szczególną uwagę przy instalacji systemu ociepleń na elewacjach już użytkowanych budynków, zwłaszcza tych, których stan techniczny lub lokalizacja mogą wskazywać na możliwość występowania wilgoci w murach przyziemia oraz w części podziemnej?
Zobacz też: Cele oraz kontrola renowacji antypleśniowej w zawilgoconych pomieszczeniach
Co należy koniecznie sprawdzić, aby zamiast zakładanych oszczędności nie doprowadzić do przyśpieszonej degradacji substancji budowlanej? Kiedy można instalować układ ociepleniowy bez ryzyka? Na te podstawowe pytania postara się odpowiedzieć ten artykuł.
Ocieplanie budynków a kontrola wilgotności murów – wskazania formalne
Zgodnie z zapisami Warunków Technicznych Wykonania i Odbioru Robót Budowlanych [1] pkt. 5.2. „Przystąpienie do robót ociepleniowych”: „Każdorazowo przed klejeniem warstwy termoizolacyjnej zaleca się wykonanie pomiarów wilgotności podłoża za pomocą przyrządu do pomiaru wilgotności materiałowej. Dokładność pomiarowa powinna wynosić ± 1%. W badanej strefie należy wykonać co najmniej pięć pomiarów punktowych. W krajowych wymaganiach nie występują szczegółowe wytyczne określające dopuszczalną wilgotność podłoża. Zalecana wilgotność podłoży betonowych (w tym z betonów lekkich), a także ceramicznych i silikatowych nie powinna przekraczać 4%”.
Pierwszy zapis o wymaganiach w zakresie dopuszczalnego poziomu zawilgocenia murów, na których miałyby być układane systemy ETICS, pojawił się w poprzednim wydaniu ww. dokumentu z 2019 r. Wcześniej takie wymagania nie funkcjonowały w wymaganiach formalnych. Brak wymagań powodował, że niekiedy instalacja systemów odbywała się bez żadnych wcześniejszych sprawdzeń i analiz na zawilgoconych murach, z oczywistymi następstwami, które zostaną opisane poniżej.
Bezpośrednie przyczyny zawilgocenia budynków
Wilgoć oddziałuje na ściany każdego budynku podczas całego okresu jego eksploatacji w następujących postaciach (RYS. 1):
- wód opadowych zawilgacających ściany zewnętrzne, w tym ściany fundamentowe (opad bezpośredni lub wody z rynien i rur spustowych), nieszczelności pokrycia – również więźbę dachową, ściany i stropy,
- wód z tzw. rozbryzgów (odbitych od powierzchni opasek) zawilgacających strefę cokołową,
- wód napływowych kierowanych bezpośrednio na budynek z terenów przyległych,
- wód gruntowych zawilgacających ściany fundamentowe, ławy i warstwy podłóg na gruncie,
- zawilgocenia wynikającego z występowania przecieków lub awarii instalacji, biegnących wewnątrz budynku lub w jego bezpośrednim sąsiedztwie,
- wilgoci kondensacyjnej i zawilgocenia wynikające z higroskopijnego poboru wilgoci (wysolenia na powierzchni ścian).
Oddziaływanie wilgoci w przypadku braku efektywnych izolacji pionowych i poziomych ścian oraz podłóg na gruncie, niedostatecznej wentylacji pomieszczeń (zwłaszcza piwnicznych), a także niewłaściwej izolacyjności termicznej przegród budowlanych z czasem doprowadzi do systematycznego wzrostu ich zawilgocenia, a także w większości przypadków również do wystąpienia transportu kapilarnego wilgoci w strukturze ścian.
Skutki zawilgocenia oraz prace izolacyjno‑renowacyjne
Bezpośrednimi skutkami zawilgocenia substancji budowlanej są:
- wzrost zawilgocenia przegród i zabudowanych w nich materiałów budowlanych, w tym termoizolacyjnych,
- podwyższenie wysokości zawilgocenia ścian oraz wilgotności wewnątrz pomieszczeń,
- postępująca korozja wypraw tynkarskich, powłok malarskich oraz ścian, w tym zapraw murarskich,
- porażenie powierzchni przegród przez grzyby rozkładu pleśniowego, algi,
- porażenie elementów drewnianych oraz drewnopochodnych przez grzyby domowe oraz owady – techniczne szkodniki drewna,
- obniżenie izolacyjności termicznej przegród budowlanych na skutek ich zawilgocenia i wynikającego stąd dalszego pogorszenia warunków cieplno-wilgotnościowych wewnątrz pomieszczeń.
Celem prac izolacyjno-renowacyjnych jest trwałe zmniejszenie poziomu zawilgocenia przegród w budynku, zahamowanie procesów degradacji obiektu i zapewnienie właściwej jego eksploatacji już po zakończeniu robót. Przy opracowywaniu technologii prac każdy obiekt należy traktować indywidualnie, natomiast zakres prac – kompleksowo.
Prace izolacyjno-renowacyjne obiektów zawilgoconych budynków z reguły obejmują:
- wykonanie wtórnych, powłokowych izolacji ścian zewnętrznych oraz cokołów,
- wykonanie wtórnych, strukturalnych izolacji poziomych w murach zewnętrznych i wewnętrznych,
- wykonanie wtórnych izolacji pomieszczeń wewnętrznych: podłóg, izolacje typu wannowego pomieszczeń zagłębionych w gruncie itp.,
- zabezpieczenie murów przed korozją wywołaną przez krystalizację szkodliwych soli – systemy tynków renowacyjnych,
- reprofilację otaczającego terenu, właściwe ukształtowanie opasek na obwodzie budynku,
- uporządkowanie gospodarki wodami opadowymi, ewentualną zmianę sposobu odprowadzenia wód opadowych,
- wykonanie prac naprawczych na elewacjach budynku, w tym jeżeli ile możliwe, instalację systemu ociepleń.
Czym skutkuje ocieplanie zawilgoconych murów
Programując zakres prac, należy uwzględnić w rozwiązaniach przede wszystkim zasadę non nocere. Jest to szczególnie ważne w przypadku obiektów zawilgoconych, w stosunku do których często podejmuje się prace połowiczne, mające na celu jedynie czasową poprawę estetyki obiektu w miejscach, gdzie doszło do degradacji elementów budynku.
Decydenci i wykonawcy bardzo często zapominają o podstawowych zasadach, z których wynikają proste zależności w przebiegu procesów korozyjnych. Za przykład postawmy jedną z nich:
„Wydajność pochłaniania wody jest równa wydajności odparowania dyfuzyjnego”.
RYS. 2–4. Zasada „wydajność pochłaniania wody = wydajność odparowania dyfuzyjnego” w praktyce: ściana o grubości „A” (2), ściana o grubości „B” – podwyższony poziom zawilgocenia (3), ściana o grubości „A” z zainstalowaną okładziną ograniczającą odparowanie wilgoci – poziom zawilgocenia znacznie powyżej pierwszego przypadku (4); rys.: M. Garecki
Przeanalizujmy tę zasadę na kolejnych przykładach. Jako punkt wyjścia przyjmijmy ścianę o grubości „A”, która ma możliwość stałego lub okresowego poboru wody przez ścianę lub ławę fundamentową. Transport kapilarny w strukturze przegrody będzie postępował na wysokość, gdzie wystąpi strefa odparowania (RYS. 2–4).
Zazwyczaj strefy te występują: od strony zewnętrznej – strefa cokołowa, od strony wewnętrznej – pomieszczenia piwniczne i parter. Poziom zawilgocenia muru znajduje się powyżej stref odparowania dyfuzyjnego wilgoci ze struktury murów.
W okresie wzmożonego napływu wód gruntowych ulega podwyższeniu ilość wody pobieranej przez fundamenty budynku. Zwiększony pobór wilgoci skutkować musi koniecznością zwiększenia jej odparowania, zatem również podwyższeniem intensywności podciągania kapilarnego wilgoci w murach.
Jak wyglądać będzie ten proces w przypadku muru wykonanego z tego samego materiału, ale o większej grubości „B” („A” < „B”)?
Większa powierzchnia poboru wody (ściana fundamentowa) skutkuje koniecznością zwiększenia powierzchni jej odparowania, zatem podwyższeniem poziomu zawilgocenia muru o grubości „B” w stosunku do ściany o grubości „A”.
Wróćmy teraz do przypadku pierwszego, czyli ściany o grubości „A”. Częstą praktyką wykonawczą jest wykonywanie na powierzchni przegród, na których doszło do korozji wypraw tynkarskich i samych murów, lokalnych „napraw” polegających na instalacji nowych wypraw tynkarskich (głównie cementowych), okładzin ceramicznych lub kamiennych. Możemy założyć również montaż systemu ociepleń na zawilgoconej ścianie. Czym skutkuje takie działanie?
Dyfuzja pary wodnej w dotychczasowej strefie odparowania ulega znacznemu zmniejszeniu. Ponieważ nadal obowiązuje zasada: „wydajność pochłaniania wody = wydajność odparowania dyfuzyjnego”, zatem aby zachować dotychczasową powierzchnię i wydajność odparowania dyfuzyjnego, poziom zawilgocenia muru ulega podwyższeniu, znacznie powyżej poziomu zaznaczonego na RYS. 2–4.
Zatem zabudowanie systemu ociepleń na zawilgoconych ścianach zewnętrznych – należy podkreślić to raz jeszcze – będzie skutkować:
- podwyższeniem poziomu zawilgocenia murów,
- zwiększeniem dyfuzji wilgoci do wnętrza pomieszczeń,
- przyśpieszoną degradacją powierzchni murów i wypraw tynkarskich,
- stopniowym podwyższaniem zawilgocenia izolacji termicznej, zatem obniżaniem izolacyjności termicznej murów ze wszelkimi tego skutkami,
- realnym zagrożeniem rozwoju porażenia biologicznego na wewnętrznej powierzchni przegród.
W przypadku systemu ETICS zainstalowanego na silnie zawilgoconej ścianie (RYS. 4) zmiany dotyczyłyby zamknięcia możliwości wysychania ściany w wyniku instalacji na ścianie fundamentowej i cokole płyt XPS, a powyżej – płyt MW. Efektem takich zmian byłoby skierowanie dyfuzji wilgoci do wnętrza pomieszczeń (prawa strona), np. piwnic czy parteru.
Oczywiście z uwagi na znacznie mniejszą wydajność odparowania dyfuzyjnego ścian od strony wewnętrznej konieczne będzie powiększenie powierzchni, przez którą zachodzi proces obsychania murów.
Wydajność odparowania dyfuzyjnego będzie zależała od wilgotności względnej powietrza panującej w pomieszczeniach (okresowo zmienna). Następstwem zamknięcia kierunku dyfuzji w lewą stronę (na zewnątrz – system ETICS) i czasowego jej ograniczania w prawą stronę (pomieszczenia wewnętrzne) będzie znaczne podwyższenie poziomu zawilgocenia ściany zewnętrznej.
Należy podkreślić, iż poza innymi problemami, które może rodzić instalacja systemów ociepleń na zawilgoconych murach, pozostaje również problem zawilgocenia samego materiału termoizolacyjnego, który ma zdolność do ograniczonej sorpcji wody z dyfundującego wilgotnego powietrza i wynikających stąd konsekwencji.
Ciekawe wyniki badań wykonanych na próbkach z wełny mineralnej i styropianu (np. styropianu XPS) dotyczą absorpcji przez te materiały wilgoci przy długotrwałej dyfuzji pary wodnej [2]. Okazało się, że próbki obu tych materiałów izolacyjnych charakteryzują się podobnym poziomem absorpcji wody po ekspozycji w warunkach wilgotnych przez okres siedmiu dni: 2,5 kg/m2, 14 dni: 4–5 kg/m2, 21 dni: 6–6,5 kg/m2 oraz 28 dni: 7–7,5 kg/m2.
Kolejny przedstawiony w artykule eksperyment dotyczył tempa wysychania zewnętrznej, monolitycznej ściany betonowej o grubości 12 cm, pokrytej systemami na wełnie mineralnej i styropianie o grubości 22 cm, czasy te wynosiły odpowiednio – 4,8 miesiąca oraz 16 miesięcy.
RYS. 5. Zasada wykonywania pomiaru poziomu zawilgocenia murów budynków: w każdym punkcie pomiarowym jest dokonywany pomiar wilgotności na różnych poziomach. Przykładowo, kolejne wysokości pomiaru: +0,1 m ppp/ppt, +0,5 m, +1,0 m, +1,5 m oraz +2,0 m. Na każdym z poziomów jest określany poziom zawilgocenia murów. Taki pomiar pozwala na opracowanie mapy zawilgoceń obiektu i na jej podstawie – wnioskowanie odnośnie rzeczywistych przyczyn zawilgocenia obiektu i opracowanie technologii prac izolacyjno-renowacyjnych; rys.: Atlas
Wyniki te dają pewien pogląd na sytuację, gdy zawilgocenie ściany ma charakter ciągły lub okresowy, a jej nasiąkliwość jest niewspółmiernie wyższa od nasiąkliwości betonu. Dlatego warto tu szczególnie podkreślić: w przypadku zaobserwowania skutków ewentualnego zawilgocenia zakres prac izolacyjno-renowacyjnych oraz przyjęte rozwiązania technologiczno-materiałowe powinny wynikać z przeprowadzonych wcześniej prac diagnostycznych – ekspertyzy i kompleksowego projektu prac zabezpieczających.
Gdy mamy do czynienia z budynkami zlokalizowanymi w terenach podmokłych, na stokach lub w zagłębieniach terenu, przy nieuporządkowanym odprowadzeniu wód opadowych, budynkami z kilkudziesięcioletnią metryką, często z nieefektywnymi izolacjami pionowymi i poziomymi itp., w takich sytuacjach rekomenduje się sprawdzić wilgotność murów przed montażem systemu ETICS.
Syndrom zawilgoconego budynku – podstawowe zasady prac diagnostycznych
Pomiary wilgotności strukturalnej ścian budynku należy przeprowadzić w wielu punktach pomiarowych. W każdym z takich punktów prace diagnostyczne powinny obejmować pomiar wilgotności przegrody na różnych wysokościach (RYS. 5). Badanie realizowane w oparciu o te założenia pozwala wskazać bezpośrednią przyczynę zawilgocenia przegrody.
RYS. 6. Różnica pomiędzy wilgotnością na powierzchni przegrody w porównaniu z pomiarem w środku jej grubości. Przypadek pierwszy od lewej: wilgotność w środkowej części ściany jest znacznie wyższa niż na jej powierzchni – typowy przykład występowania kapilarnego transportu wilgoci. Kolejny przypadek: sytuacja odwrotna – występuje pobór wilgoci przez zewnętrzną powierzchnię przegrody; rys.: Atlas
Aby jednoznacznie potwierdzić przyczyny wystepujących zawilgoceń murów, konieczne jest wykonanie dodatkowych pomiarów na powierzchni oraz w środku grubości przegrody (RYS. 6). Dopiero tak zestawione wyniki pomiarów wilgotności pozwalają na:
- sporządzenie mapy zawilgoceń i na jej podstawie wskazanie przyczyn zawilgocenia obiektu,
- zaplanowanie lokalizacji wykonywania wtórnych przepon iniekcyjnych,
- wykonanie ewentualnych izolacji przeciwwodnych (np. na kondygnacjach piwnic – jeśli istnieją),
- wskazanie punktów poboru próbek do wykonania badań jakościowo-ilościowych soli budowlanych i doboru rozwiązań w zakresie stosowania tynków renowacyjnych,
- ewentualnego planowania wykonania systemu ETICS na elewacjach poddanych analizom.
Poniżej omówiono przykład realizacji ocieplenia zawilgoconego obiektu zabytkowego, poprzedzony obszerną diagnostyką (RYS. 7).
RYS. 7. Przedmiot analizy: wschodnie skrzydło obiektu powięziennego – obecnie Instytut Designu w Kielcach. Lokalizacja na Wzgórzu Zamkowym w bezpośrednim sąsiedztwie Bazyliki Katedralnej oraz Pałacu Biskupów Krakowskich; rys.: Google Maps
Przykład instalacji systemu ociepleń na części ścian obiektu zabytkowego
Więzienie przy ulicy Zamkowej w Kielcach powstało w latach 1826–1828 i funkcję więzienia pełniło do lat 70. XX wieku. Przez następne 30 lat opuszczony zespół budynków powięziennych niszczał wystawiony na bezpośrednie oddziaływanie warunków atmosferycznych.
W skład zespołu powięziennego wchodziły budynki:
- skrzydło wschodnie: budynek dwukondygnacyjny, niepodpiwniczony,
- skrzydło południowe: budynek jednokondygnacyjny, niepodpiwnicznony,
- skrzydło zachodnie: budynek trzykondygnacyjny, od strony dziedzińca pierwsza kondygnacja znajduje się całkowicie pod ziemią,
- dawne skrzydło północne wraz z bramą wjazdową zostało całkowicie wyburzone i zastąpione krótszym murem monolitycznym z ażurowymi otworami.
FOT. 1–2. Zdjęcia archiwalne (2007 r.): stan techniczny skrzydła wschodniego, narożnik płn.-zach. (1), elewacja wschodnia (2); fot.: M. Garecki [3]
FOT. 3–4. Zdjęcia archiwalne (2007 r.): fragment elewacji zachodniej, dzisiejsze wejście do Instytutu Designu (3), a także narożnik, połączenie skrzydła wschodniego z południowym (4); fot.: M. Garecki [3]
W 2007 r. zostały przeprowadzone prace diagnostyczne i opracowany projekt renowacji i przebudowy obiektów z przeznaczeniem na Ośrodek Myśli Patriotycznej i Obywatelskiej (OMPiO) oraz Design Centrum Kielce (DCK). Prace remontowe rozpoczęto w 2010 r. i zakończono po prawie dwóch latach (FOT. 1-4).
Diagnostyka
Prace diagnostyczne obejmowały szeroki zakres badań. Jednym z efektów prac było opracowanie szczegółowej mapy zawilgoceń (RYS. 8). Wskazuje ona m.in. na poziom zawilgoceń ścian zewnętrznych obiektu (zaznaczone skrzydło wschodnie) w stopniu wysokim (> 8%) na wysokość:
- ściana południowa: do 2,0 m ppt,
- ściana wschodnia: do 1,0 m ppt, lokalnie 2,0 m ppt (brak rur spustowych na elewacji),
- ściana północna: 1,0–2,0 m ppt,
- ściana zachodnia: 1,0–1,5 m ppt.
W wykonanej ekspertyzie sformułowano założenia prac izolacyjno-renowacyjnych koniecznych do wykonania w obiekcie.
RYS. 8. Szczegółowa mapa zawilgoceń obiektów powięziennych (2007 r.), zaznaczono skrzydło wschodnie; rys.: M. Garecki [3]
RYS. 9. Skrzydło wschodnie: projektowany układ wtórnych przepon iniekcyjnych: kolorem żółtym oznaczono projektowane izolacje ścian zewnętrznych (dwustronne, dwurzędowe w poziomie istniejących posadzek), a kolorem zielonym – izolacje ścian wewnętrznych (jednostronne, dwurzędowe w poziomie istniejących posadzek; rys.: M. Garecki [4]
RYS. 10. Izolacje wtórne na ścianach zewnętrznych parteru (fragment dokumentacji projektowej z 2007 r.): ciśnieniowe, dwustronne. Wymagany zakład odwiertów: min. 10 cm. W linii otworów iniekcyjnych od strony zewnętrznej i wewnętrznej wykonane pasy z izolacji powłokowej mineralnej, elastycznej. Na ścianie fundamentowej izolacja typu ciężkiego, na cokole izolacja mineralna, elastyczna – zakład na izolację bitumiczną min. 20 cm. Ocieplenie ścian fundamentowych oraz cokołu: XPS, ocieplenie ścian zewnętrznych powyżej cokołu: MW. Ściany zewnętrzne fragmentami częściowo zagłębione w gruncie: od strony wewnętrznej – pełny system tynków renowacyjnych; rys.: M. Garecki [4]
Rozwiązania projektowe
Ograniczona ilość miejsca w artykule nie pozwala na przedstawienie całego zakresu prac konstrukcyjno-renowacyjnych zawartych w opracowanym w 2007 r. projekcie. Należy jedynie zaznaczyć, że rozwiązania dotyczyły m.in.:
- wykonania wtórnych przepon iniekcyjnych (iniekcje ciśnieniowe) na całym obiekcie z wyjątkiem oczywiście ścian kwalifikowanych do wyburzeń – plan iniekcji pokazano na RYS. 9, a sposób ich wykonania na RYS. 10–11,
- wykonania nowych izolacji pionowych ścian zewnętrznych wraz z częścią cokołową oraz izolacji poziomych nowych podłóg na gruncie,
RYS. 11. Izolacje wtórne na ścianach wewnętrznych parteru (fragment dokumentacji projektowej z 2007 r.): ciśnieniowe, jednostronne. W linii otworów iniekcyjnych obustronnie wykonane pasy z izolacji powłokowej mineralnej, elastycznej, powiązane z izolacją poziomą podłóg na gruncie. Na ścianach: pełny system tynków renowacyjnych; rys.: M. Garecki [4]
- likwidacji porażenia biologicznego (algi) na elewacji, wykonania ocieplenia ścian zewnętrznych skrzydła wschodniego i południowego z wyłączeniem skrzydła zachodniego, izolacji części podziemnych i cokołu budynków XPS, a elewacji MW, wyprawa tynkarska gładka malowana farbą silikonową,
- wymiany pokrycia dachowego i więźby dachowej, montaż nowych rynien i rur spustowych, uporządkowanie gospodarki wodami opadowymi na dziedzińcu.
Kontrole i nadzór
W projekcie założono, że prace przy instalacji systemu ociepleń będą mogły być przeprowadzone po upływie min. 6 miesięcy od skucia istniejących wypraw tynkarskich i wykonania wtórnych izolacji pionowych, poziomych oraz strukturalnych w murach budynków. Ponowne prace pomiarowe w zakresie wilgotności murów przeprowadzono kolejno po upływie 7, 12 i 15 miesięcy. Dopiero po tym czasie potwierdzono, że ściany osiągnęły wilgotność umożliwiającą wykonanie montażu systemu ociepleń.
RYS. 12. Wykonywanie iniekcji w narożnikach budynków: trudne miejsca, na które warto zwrócić szczególną uwagę; rys. [5]
Efekt prac: obiekt po 10 latach eksploatacji
Po tym okresie eksploatacji wyprawy tynkarskie zewnętrzne oraz wewnętrzne nie wykazują problemów eksploatacyjnych i nadal w dobrej formie prezentują się odwiedzającym zarówno Wzgórze Katedralne, jak i instytucje znajdujące się w starych, wyremontowanych obiektach powięziennych (FOT. 5-6).
FOT. 5–6. Obecny wygląd ocieplonych przed 20 laty elewacji Instytutu Designu w Kielcach; kwiecień 2022 r.; fot. M. Garecki
Literatura
- „Warunki Techniczne Wykonania i Odbioru Robót Budowlanych, część C: Zabezpieczenia i izolacje, Zeszyt 8: Założone systemy ocieplania ścian zewnętrznych budynków (ETICS) z zastosowaniem styropianu lub wełny mineralnej i wypraw tynkarskich”, Instytut Techniki Budowlanej, Warszawa 2020.
- A. Buszko, „Wełna mineralna i jej odporność na wodę”, „Inżynier Budownictwa” 4/2020.
- M. Garecki, „Ekspertyza techniczna mykologiczno-budowlana zespołu budynków powięziennych wraz z Muzeum Historii Więziennictwa Kieleckiego lat 1939–1956 przy ulicy Zamkowej w Kielcach”, Kielce, czerwiec 2007 r.
- M. Garecki, „Projekt techniczny prac izolacyjno-renowacyjnych remontu i modernizacji zespołu budynków powięziennych wraz z Muzeum Historii Więziennictwa Kieleckiego lat 1939–1956 przy ulicy Zamkowej w Kielcach”, Kielce, listopad 2007 r.
- M. Rokiel, „Hydroizolacje w budownictwie” wyd. III, Grupa MEDIUM, Warszawa 2019.